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The Al Advancement
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[Taigman et al., 2014, Ouyang et al., 2022, Abramson et al., 2024]
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The Al Advancement

Neural activity in the human brain aligns linearly with LLM embeddings

[Goldstein et al., 2025] 3




The Al Advancement

Why?

[Goldstein et al., 2025] 4




The “Why” Question
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Why Is The “Why” Question Important?
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What Specific “Why” Questions Can We Ask?

* How is an input processed?

 How does training data shape the model?

 How does each model component influence model behavior?
* Answer: Interpret Al via Attribution

— Zhang, S., Han, T., Bhalla, U., and Lakkaraju, H. (2025). Building Bridges, Not Walls--
Advancing Interpretability by Unifying Feature, Data, and Model Component
Attribution. https://arxiv.org/pdf/2501.1 8887
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The Attribution Problem

* Consider an abstraction of an Al system

 How to explain the model output? Attribution

Training

Model

Input Test
Features Output




Feature Attribution

* Why this output for these input features?

* Feature attribution quantifies how features influence the model’s output
— Test time, without altering model parameters

Model

Input Test
Features Output
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Feature Attribution

» Justify prediction, gain trust, and provide recourse by counterfactual explanations

Increase Salary by $10,000
then the loan will be approved

Loan Application Loan Application

Model
Salary: $50,000 Salary: $50,000
Input . : - .
Gender: Female Denied =—> Gender:
Features : L )
Credit Score: 700 Credit Score: 700

12

[Wachter et al, 2018]




Feature Attribution

« Justify prediction, gain trust, and provide recourse by counterfactual explanations
* |dentify spurious correlations

Model

Test

—p- —— \Wolf —_—
(Inference)

Input i
Features




Data Attribution

* Why this output for these training data points?

« Data attribution studies how the training data shape model behavior

Training

Model

| t Test
npu Output




Data Attribution

* Characterize training data properties and value

Training

Model

Fish

[Koh & Liang, 2017] 15
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Data Attribution

e Characterize training data properties and value
» Justify harmful data

Training

Model

!

[Koh & Liang, 2017] 16




Data Attribution

e Characterize training data properties and value
» Justify harmful data

Training I

Model the measured
Inflation is often Consumer using th?j
measured using Price Price Index (CP!)or
Index the Producer Price

Index (PPI).

[Grosse et al, 2023]
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The Attribution Problem

Training

Model

Input Test
Features Output




Component Attribution

* Why this output for these model components?

« Component attribution analyzes how model components contribute to its output
— Components have various definitions, e.g., neurons, attention heads, etc.

Model

| Test
nput Output




Component Attribution

* Why this output for these model components?

« Component attribution analyzes how model components contribute to its output
— Components have various definitions, e.g., neurons, attention heads, etc.
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[Wang et al, 2022] 20




Three Types of Attribution

N u Feature
Training > 0 Attribution
Model I Attribution
Input Test
Features Output - —
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Formalization of The Attribution Problem

x=lry,..., T4 - {l\/lOdel } I V()
H ()
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How Are These Attribution Results Achieved?
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Feature Attribution Methods

Methods | . Fegtu r.e
Attribution

Model
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Features Output




Perturbation-Based Feature Attribution

* Direct Perturbation
— Perturb features and observe output changes

Model

N
(0]



Perturbation-Based Feature Attribution

* Direct Perturbation
— Perturb features and observe output changes
— Occlusion

Saliency Map

Model

[Zeiler and Fergus, 2014]



Perturbation-Based Feature Attribution

 Feature interactions?

 Game-Theoretic Perturbation
— Features as players, model processing as a game. Fairly distribute outcome
— 29 marginal contributions

Model
flxsU{z;}) — flzs)

!

Shapley Value

[Shapley, 1953] 28




Perturbation-Based Feature Attribution

* Perturbation Mask Learning
— Perturbations can be seen as binary masks
— Why not make them continuous and learnable?
— The masking model can be applied to other inputs

Saliency Map

Model
Learned

Masking
Model

Masking
Model

[Dabkowski & Gal, 2017, Petsiuk et al., 2018]



Gradient-Based Feature Attribution

* Parameter gradients for model training vs. features gradients for attribution
* Measure output sensitivity to input features; No updates to model parameters

Dtrain - {x(l)a SR 7x(n)}

Backward

x=[r1,..., 24 Model

|E| 0

L) | VoL(6)

flx)  V.f(x) — ¢i(z)

[Dabkowski & Gal, 2017, Petsiuk et al., 2018]



Gradient-Based Feature Attribution

 “Vanilla” Gradients




Gradient-Based Feature Attribution

* Variations of gradient-based methods

Integrated ~ Gradient

Original Guided Guided  Integrated  Gradients ©
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad Input

Ea T e - J
SV e - " [ '*‘. - -’ a .‘
-

F-.f‘

[Adebayo et al., 201 8] 32




Gradient-Based Feature Attribution

 SmoothGrad
— Smooth over noisy versions of the input to enhance robustness
SmoothGrad

v$+€1f(:’c _|_ E].)

vx+ezf(33 + 62) — ¢Z($)

V$+€3f(96 + 63)




Linear Approximations for Feature Attribution

* |f we cannot understand the complex Al models, what model can we understand?
e Local approximation

Class A

Class B

[Ribeiro et al., 2016, Santiago, 2020]



Linear Approximations for Feature Attribution

* If we cannot understand the complex Al models, what model can we understand?

e Local approximation
« We don’t even need actual input features, only binary indicators

g@) =uw'e+b  2={L0} w — @)

Wolf !

L] Class A

% Observation
vicinity

]
Class B
L ]

Linear Model

!




Feature Attribution Methods

u Feature
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1 - Attribution
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How About Data Attribution?

Training Methods
Perturbations
Model Gradients I Attribution
Test
Input
p I:I Output Linear
Approximations




Perturbation-Based Data Attribution

e Leave-One-Out (Direct Perturbation)
— Remove one training point at a time, retrain model, and observe output changes
— Computationally expensive, retrain n times

fla) = f(2) ()

Training

Model

d
Model

LOO

[Cook & Weisberg, 1982] 39




Perturbation-Based Data Attribution

* Game-Theoretic Perturbation

— Capture training data interactions
— 2™ marginal contributions, each with a retraining flx) — [ (2)

Training

Model

|:| Model

LOO

[Ghorbani & Zou, 2019] 40




Gradient-Based Data Attribution

* No retrainings (perturbations)
— Gradients for measuring similarity between data points

— Dot products of gradients evaluated at the training and test points

Dtrain - {x(l)a tee 7:E(n)} Vgﬁ(fg(x))TVQE(fg(x(j))) Qp](.’]})
Backward
- |:| Mc()9de| L(0)  VoLl(fo(z))
L) L) VoL(fo(zD))

[Charpiat et al., 2019] 41




Gradient-Based Data Attribution

* Influence Functions
— Approximate LOO by lifting one data point 0, . = arg 1 min — ZE @) ) + eL(x9), 0)
— Compute Hessian matrix

Divain = {2V, ..., 2} VoL(fo(x)) T Hy ' VoL (fo(xV))) V()
Backward
. D Mo L) VoL(fal@))
L) L) VoL(fo(zD))
(2. 2t L(6) HQZ%;V%U@(M))

[Koh & Liang, 2017] 42




Linear Approximations for Data Attribution

* The Datamodel
— Skip model training, directly predict model outputs from training data
— Collect counterfactual data for training

Training

Model

Test
In
put |:| Output

g(z) =w'z+b z2={1,0}" w — Yx)

[llyas et al., 2022]
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Data Attribution Methods

Training Methods
Perturbations
Model Gradients I Attribution
Test
Input
p I:I Output Linear
Approximations




How About Component Attribution?

Methods

Perturbations

Model .
Gradients

Test
Input
P |:| Output Linear

Approximations @

® Attribution




Perturbation-Based Component Attribution

e (Casual mediation analysis
— Perturb (replace with dummy values) components and observe output changes
— Find the casual components, e.g., subnetworks

flx) = fou(z) V()

Model

d

Model

Jr(z)

[Pearl, 2022] 47




Perturbation-Based Component Attribution

e Game-Theoretic Perturbation
— Capture component interactions

f(@) = fr(x)

Model

d

Model

Jr(z)

[Ghorbani & Zou, 2020]



Perturbation-Based Component Attribution

* Mask Learning and Subnetwork Probing
— Use a learnable mask for selecting neurons

Model

. D f(@) = 1)
Model

Mask ~e ()

[Cao, 2021] 49




Perturbation-Based Component Attribution

e (Casual mediation analysis
— Perturb inputs
— A three-run patching paradigm: original, perturbed, and restored

Model
T |E| f(x)
Model

, f@)
' |;| fi (")

[Meng et al., 2022] 50




Gradient-Based Component Attribution

* Gradients for approximating the patching paradigm
 An underexplored area

[Nanda, 2023] 51




Linear Approximations for Component Attribution

* Alinear model to directly predict test output with altered components
— Collect counterfactual data for training

Model

Test
In
put |:| Output

glc)=wlc+b c={1,0}" w Vi(T)

[Shah et al., 2024] 52
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A Unified View of Attribution

u Feature
. Methods
Training —> - Attribution
Perturbations
Model Gradients I Attribution
Input : Test
Features |m Output Linear
b ® pon
Approximations -~ _® Attribution
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Cross-Aspect Innovation

* Advanced gradient-based method for component attribution
— Utilize the Hessian matrix for better approximation with second order information




Cross-Aspect Innovation

* A holistic view of attribute to multiple perspectives

— A specific model behavior may be explained in terms of features, data, and
components jointly




Cross-Aspect Innovation

* Atheoretical unification
— A framework in terms of local function approximation for feature attribution
— Generalize to data and component attribution?
Table 3. Existing methods perform local function approximation of a black-box model f using the interpretable model class G of linear

models where g(z) = w' z over a local neighbourhood Z around point x based on a loss function £. © indicates element-wise
multiplication. (Table reproduced from Han et al. (2022)).

Techniques | Attribution Methods | Local Neighborhood Z around z{*} ‘ Loss Function /¢
: Occlusion x®&; £(€ {0,1}9) ~ Random one-hot vectors Squared Error
Perturbati ’ X
erturbations KernelSHAP {0 o & €(e {0,1}%) ~ Shapley kernel Squared Error
Vanilla Gradients z +&; £(€ RY) ~ Normal(0, 62),0 — 0 Gradient Matching
Gradients Integrated Gradients éx; &£(€ R) ~ Uniform(0, 1) Gradient Matching
Gradients x Input éx; £(€ R) ~ Uniform(a,1),a — 1 Gradient Matching
SmoothGrad z + & €(€ RY) ~ Normal(0, o2) Gradient Matching
: . LIME x®¢&; £(€ {0,1}%) ~ Exponential kernel Squared Error
Linear Approximations C-LIME z + & £(€ RY) ~ Normal(0, 02) Squared Error

[Han et al., 2022] 60




Connections to Other Areas of Al

* Model editing
— Goal: precisely edit model knowledge without retraining
— Application: correct model mistakes, analogous to fixing bugs in software

— Connections:
* Better attribution implies better editing

* Locate influencial components, spurious feature-label correlations, and problematic
training data points can provide insights for editing
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Summary

* The attribution problem and three aspects of attribution

* A unified view of attribution

* Cross-aspect innovation and potential theoretical unification
e Connections to model editing

u Feature
. Methods
Training ] - Attribution
Perturbations
Input : Test
Features |m Output Linear
e ® pont
Approximations ® Attribution
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Notations

Notation Description

Drrain Training dataset {x(l), e ,x(”)}

fol f Model trained on Diin, parameters § may be omitted

c Internal model components {c1, - - - , ¢, }, definition is method-specific
Yz Model input at test time for inference, superscript “test” may be omitted
¢i(x) Attribution score of input feature x; for model output f(x)

Y;(x) Attribution score of training data point ) for model output f(z)

Vi () Attribution score of internal model component ¢y, for model output f ()
g Attribution function, which provides attribution scores for elements

L Loss function for training the model f

l Loss function for learning the attribution function g




Methods Summary

Table 1: A summary of representative feature, data, and component attribution methods classified into three method-
ological categories demonstrating our unified view.

Method Feature Attribution Data Attribution Component Attribution
Perturb  Direct Occlusions |Zeiler and Fergus) 2014 LOO []Cook and Weisberg,||19821
RISE {Petsiuk 20T}
.J)2023
Game-Theoretic  SHAP [Lundberg and Lee)[2017] Data Shapley [Ghorbani and Zou]2019]  Neuron Shapley [Ghorbani and Zou}[2020]
(Shapley) TMC Shapley [Ghorbani and Zou[2019]
KNN Shapley [Jia et al.]2019
Beta Shapley [Kwon and Zou,[2022]
Game-Theoretic Data Banzhaf [Wang and Jia, 2()23| -
(Others)
Mask Learning Dabkowsk1 and Gal -201 - Csordds et al. -202
X [Chen et al.]2018a ubnetwork Pruning [Cao et al.,|2021 l
Gradient  First-Order i .2013 GradDot/GradCos [[Pruthi et aL] 2020 Attribution Patchm [Nanda)[2023
‘Shrikumar et al.. EAP [Syed et al.|[2023]
0
Second-Order Integrated Hessian Ea.mzek et al. J 2021 I IF [Koh and Liang, 2017 -
(Hessian/IF) Fast
Arnoldi
EK-FAC |
RelatelF |
Tracing Path Integrated Grad [ISundararajan et al.j|2()17] Tracln [Pruthi et al. Attribution Path Patching Nandal 2023|
SGD-Influence [Hara et al.J2019
SOURCE |Bae et al.}|2024
Linear

LIME [Ribeiro et al./2016
C-LIM garwal et al.]2021

Datamodels [llyas et al.,2022
TRAK [Park et al.

COAR [Shah et al.] 2024|
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Abstract

As Al systems continue to grow in scale and complexity, understanding their behaviors
becomes increasingly critical. In this talk, | will explore three complementary perspectives on
Al interpretability: feature attribution, which analyzes how input features influence predictions;
data attribution, which traces the impact of training data on model behavior; and component
attribution, which investigates the role of internal model components such as neurons and
layers. | will cover the core ideas and recent advances in each of these areas, including
perturbation-based methods, gradient-based approaches, and linear approximation
techniques. In addition, | will highlight connections among the three attribution aspects and
propose a unified view that reveals their shared foundations. This talk aims to provide a
structured overview of the current landscape of attribution methods, equipping researchers
and practitioners with practical tools and conceptual frameworks to interpret Al systems from
multiple perspectives—and to apply these insights in real-world contexts such as model
debugging, editing, and regulation.
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