
Interpreting AI Systems Through
Features, Data, and Model Components:
A Tour of Attribution Methods

Shichang (Ray) Zhang

04/08/2025

2

The AI Advancement

Image credit: Forbes 2020

DeepFace

human-level face

recognition in 2014

(97.35% accuracy)

[Taigman et al., 2014, Ouyang et al., 2022, Abramson et al., 2024]

AlphaFold

Accurate prediction of protein structures

https://www.forbes.com/sites/forbestechcouncil/2020/09/30/12-things-you-need-to-know-about-facial-recognition-technology/?sh=a91abae328ff

3

The AI Advancement

[Goldstein et al., 2025]

Neural activity in the human brain aligns linearly with LLM embeddings

4

The AI Advancement

[Goldstein et al., 2025]

Neural activity in the human brain aligns linearly with LLM embeddings

Why?

5

The “Why” Question

[Taigman et al., 2014, Ouyang et al., 2022, Goldstein et al., 2025]

Why?

Human BrainMind of AI

6

Why Is The “Why” Question Important?

User

Trust

Data

Insight

Model

 Enhancement

7

What Specific “Why” Questions Can We Ask?

• How is an input processed?

• How does training data shape the model?

• How does each model component influence model behavior?

• Answer: Interpret AI via Attribution

– Zhang, S., Han, T., Bhalla, U., and Lakkaraju, H. (2025). Building Bridges, Not Walls--

Advancing Interpretability by Unifying Feature, Data, and Model Component

Attribution. https://arxiv.org/pdf/2501.18887

https://arxiv.org/pdf/2501.18887

8

Outline

• The Attribution Problem

• Attribution Methods

• A Unified View of Attribution

• Cross-Aspect Innovation and Connections to Other Areas of AI

9

Outline

• The Attribution Problem

• Attribution Methods

• A Unified View of Attribution

• Cross-Aspect Innovation and Connections to Other Areas of AI

10

The Attribution Problem

Train

Model

(Inference)

TestInput

Features

Training Data

• Consider an abstraction of an AI system

• How to explain the model output? Attribution

Test

Output

11

Feature Attribution

• Why this output for these input features?

• Feature attribution quantifies how features influence the model’s output

– Test time, without altering model parameters

Model

(Inference)

TestInput

Features

Test

Output

12

Feature Attribution

• Justify prediction, gain trust, and provide recourse by counterfactual explanations

Model

(Inference)

Test
Denied

[Wachter et al, 2018]

Input

Features

Loan Application

Salary: $50,000

Gender: Female

Credit Score: 700

…

Increase Salary by $10,000

then the loan will be approved

Loan Application

Salary: $50,000

Gender: Female

Credit Score: 700

…

13

Feature Attribution

• Justify prediction, gain trust, and provide recourse by counterfactual explanations

Model

(Inference)

Test
Wolf

[Ribeiro et al, 2016]

Input

Features

(a) Husky classified as wolf (b) Explanat ion

F igur e 11: R aw dat a and ex p lanat ion of a bad
m odel ’s pr ed ict ion in t he “ H usk y vs W ol f ” t ask .

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potent ial feature 12 out of 27 25 out of 27

Table 2: “ H usk y v s W ol f ” ex p er im ent r esu l t s.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to dist inguish between these
photos of wolves and huskies. Aft er get t ing these responses,
we show the same images with the associated explanat ions,
such as in Figure 11b, and ask the same quest ions.

Since this task requires some familiarity with the not ion of
spurious correlat ions and generalizat ion, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject ment ioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight , and report these numbers
before and after showing the explanat ions in Table 2.

Before observing the explanat ions, more than a third
t rusted the classifier, and a lit t le less than half ment ioned
the snow pat tern as something the neural network was using
– although all speculated on other pat terns. After examining
the explanat ions, however, almost all of the subjects ident i-
fied the correct insight , wit h much more certainty that it was
a determining factor. Further, the t rust in the classifier also
dropped substant ially. Although our sample size is small,
t his experiment demonst rates the ut ility of explaining indi-
vidual predict ions for get t ing insights into classifiers knowing
when not to t rust t hem and why.

7. RELATED WORK
The problems with relying on validat ion set accuracy as

the primary measure of t rust have been well studied. Pract i-
t ioners consistent ly overest imate their model’s accuracy [20],
propagate feedback loops [23], or fail t o not ice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [21] and Modelt racker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predict ions.
Furt her, our submodular pick procedure can be incorporated
in such tools to aid users in navigat ing larger datasets.

Some recent work aims to ant icipate failures in machine

learning, specifically for vision tasks [3, 29]. Let t ing users
know when the systems are likely to fail can lead to an
increase in t rust , by avoiding “ silly mistakes” [8]. These
solut ions either require addit ional annotat ions and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be t rusted. Furt her-
more, they assume that the current evaluat ion met rics are
reliable, which may not be the case if problems such as data
leakage are present . Other recent work [11] focuses on ex-
posing users to di↵ erent kinds of mistakes (our pick step).
Interest ingly, the subjects in their study did not not ice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggest ing that examining raw data
is not sufficient . Note that Groce et al. [11] are not alone in
this regard, many researchers in the field have unwit t ingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
ident ify these irregularit ies when explanat ions are present .
Furt her, LIME can complement these exist ing systems, and
allow users to assess t rust even when a predict ion seems
“ correct ” but is made for t he wrong reasons.

Recognizing the ut ility of explanat ions in assessing t rust ,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5 − 10 features is unsuitable for text applicat ions). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or efficiency. For text , EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detect ion to produce
candidate alignments [13] or at tent ion [28] are able to pro-
duce explanat ions for their predict ions. T hese are, however,
const rained to specific neural network architectures or inca-
pable of detect ing “ non object ” part s of the images. Here we
focus on general, model-agnost ic explanat ions that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet t o be proposed.

A common approach to model-agnost ic explanat ion is learn-
ing a potent ially interpretable model on the predict ions of
the original model [2, 7, 22]. Having the explanat ion be a
gradient vector [2] captures a similar locality intuit ion to
that of LIME. However, interpret ing the coefficients on the
gradient is difficult , part icularly for confident predict ions
(where gradient is near zero). Furt her, these explanat ions ap-
proximate the original model global ly, t hus maintaining local
fidelity becomes a significant challenge, as our experiments
demonst rate. In cont rast , LIME solves the much more feasi-
ble task of finding a model that approximates the original
model local ly. T he idea of perturbing input s for explanat ions
has been explored before [24], where the authors focus on
learning a specific contr ibution model, as opposed to our
general framework. None of these approaches explicit ly take
cognit ive limitat ions into account , and thus may produce
non-interpretable explanat ions, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In cont rast , LIME incor-
porates interpretability both in the opt imizat ion and in our
not ion of interpretable representation, such that domain and
task specific interpretability crit eria can be accommodated.

(a) Husky classified as wolf (b) Explanat ion

F igur e 11: R aw dat a and explanat ion of a bad

m odel ’s pr edict ion in t he “ H usky vs W ol f ” t ask .

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potent ial feature 12 out of 27 25 out of 27

Table 2: “ H usky vs W ol f ” ex per im ent r esul t s.

to work well in the real world, (2) why, and (3) how do

they think the algorithm is able to dist inguish between these
photos of wolves and huskies. After get t ing these responses,
we show the same images with the associated explanat ions,

such as in Figure 11b, and ask the same quest ions.
Since this task requires some familiarity with the not ion of

spurious correlat ions and generalizat ion, t he set of subjects
for this experiment were graduate students who have taken at

least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject ment ioned snow,

background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject

was correct about the insight , and report these numbers
before and after showing the explanat ions in Table 2.

Before observing the explanat ions, more than a third

t rusted the classifier, and a lit t le less than half ment ioned
the snow pat tern as something the neural network was using

– although all speculated on other pat terns. After examining
the explanat ions, however, almost all of the subjects ident i-
fied the correct insight , wit h much more certainty that it was

a determining factor. Further, the t rust in the classifier also
dropped substant ially. Although our sample size is small,

this experiment demonst rates the ut ility of explaining indi-
vidual predict ions for get t ing insights into classifiers knowing
when not to t rust them and why.

7. RELATED WORK
The problems with relying on validat ion set accuracy as

the primary measure of t rust have been well studied. Pract i-

t ioners consistent ly overest imate their model’s accuracy [20],
propagate feedback loops [23], or fail to not ice data leaks [14].

In order to address these issues, researchers have proposed
tools like Gestalt [21] and Modelt racker [1], which help users
navigate individual instances. These tools are complemen-

tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predict ions.

Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigat ing larger datasets.

Some recent work aims to ant icipate failures in machine

learning, specifically for vision tasks [3, 29]. Let t ing users
know when the systems are likely to fail can lead to an

increase in t rust , by avoiding “ silly mistakes” [8]. These
solut ions either require addit ional annotat ions and feature
engineering that is specific to vision tasks or do not provide

insight into why a decision should not be t rusted. Further-
more, they assume that the current evaluat ion met rics are

reliable, which may not be the case if problems such as data
leakage are present . Other recent work [11] focuses on ex-
posing users to di↵ erent kinds of mistakes (our pick step).

Interest ingly, the subjects in their study did not not ice the
serious problems in the 20 newsgroups data even after look-

ing at many mistakes, suggest ing that examining raw data
is not sufficient . Note that Groce et al. [11] are not alone in
this regard, many researchers in the field have unwit t ingly

published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to

ident ify these irregularit ies when explanat ions are present .
Furt her, LIME can complement these exist ing systems, and
allow users to assess t rust even when a predict ion seems

“ correct ” but is made for the wrong reasons.
Recognizing the ut ility of explanat ions in assessing t rust ,

many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models

may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5 − 10 features is unsuitable for text applicat ions). In-

terpretability, in these cases, comes at the cost of flexibility,
accuracy, or efficiency. For text , EluciDebug [16] is a full

human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer

vision, systems that rely on object detect ion to produce
candidate alignments [13] or at tent ion [28] are able to pro-

duce explanat ions for their predict ions. These are, however,
const rained to specific neural network architectures or inca-
pable of detect ing “ non object ” parts of the images. Here we

focus on general, model-agnost ic explanat ions that can be
applied to any classifier or regressor that is appropriate for

the domain - even ones that are yet to be proposed.
A common approach to model-agnost ic explanat ion is learn-

ing a potent ially interpretable model on the predict ions of

the original model [2, 7, 22]. Having the explanat ion be a
gradient vector [2] captures a similar locality intuit ion to

that of LIME. However, interpret ing the coefficients on the
gradient is difficult , part icularly for confident predict ions

(where gradient is near zero). Further, these explanat ions ap-
proximate the original model global ly, thus maintaining local
fidelity becomes a significant challenge, as our experiments

demonst rate. In cont rast , LIME solves the much more feasi-
ble task of finding a model that approximates the original

model local ly. T he idea of perturbing input s for explanat ions
has been explored before [24], where the authors focus on
learning a specific contr ibution model, as opposed to our

general framework. None of these approaches explicit ly take
cognit ive limitat ions into account , and thus may produce

non-interpretable explanat ions, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to

humans (e.g. word embeddings). In cont rast , LIME incor-
porates interpretability both in the opt imizat ion and in our

not ion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.

• Identify spurious correlations

14

Data Attribution

• Why this output for these training data points?

• Data attribution studies how the training data shape model behavior

Model

(Inference)

Test
Input

Test

Output

Train

Training Data

15

Data Attribution

• Characterize training data properties and value

Model

(Inference)

Test
Fish

[Koh & Liang, 2017]

Train

Training Data

16

Data Attribution

• Characterize training data properties and value

Model

(Inference)

Test
1

[Koh & Liang, 2017]

Train

Training Data
Understanding Black-box Predictions via InfluenceFunctions

Figure 1. Components of influence. (a) What is the effect of the training loss and H − 1

✓̂
terms in I up,loss? Here, we plot I up,loss against

variants that are missing these terms and show that they are necessary for picking up the truly influential training points. For these

calculations, we use logistic regression to distinguish 1’s from 7’s in MNIST (LeCun et al., 1998), picking an arbitrary test point ztest;

similar trends hold across other test points. Green dots are train images of the same label as the test image (7) while red dots are 1’s.

Left: Without the train loss term, we overestimate the influence of many training points: the points near the y=0 line should have

I up,loss close to 0, but instead have high influencewhen we remove the train loss term. Mid: Without H − 1

✓̂
, all green training points are

helpful (removing each point increases test loss) and all red pointsareharmful (removing each point decreases test loss). This isbecause

8x, x ⌫0 (all pixel values arepositive), so x ·x test ≥ 0, but it is incorrect: many harmful training pointsactually share thesame label as

ztest. Seepanel (b). Right: Without training lossor H − 1

✓̂
, what is left is thescaled Euclidean inner product ytesty ·σ(−ytest✓

> x test) ·x>
testx ,

which fails to accurately capture influence; thescatter plot deviatesquite far from thediagonal. (b) Thetest imageand aharmful training

image with the same label. To the model, they look very different, so the presence of the training image makes the model think that the

test image is less likely to bea7. TheEuclidean inner product doesnot pick up on theseless intuitive, but important, harmful influences.

space (e.g., Ribeiro et al. (2016)); if all points have the

samenorm, this isequivalent to choosing x with the largest

x ·x test. For intuition, wecompare this to I up,loss(z, ztest) on

alogistic regression model and show that influence ismuch

more accurate at accounting for the effect of training.

Let p(y | x) = σ(y✓> x), with y 2 {−1, 1} and σ(t) =
1

1+ exp(− t)
. We seek to maximize the probability of the

training set. For a training point z = (x, y), L (z, ✓) =

log(1 + exp(−y✓> x)), r ✓L (z, ✓) = −σ(−y✓> x)yx,

and H ✓ = 1
n

P n
i = 1 σ(✓> x i)σ(−✓> x i)x i x

>
i . From (2),

I up,loss(z, ztest) is:

−ytesty · σ(−ytest✓
> x test) · σ(−y✓> x) · x>

testH
− 1

✓̂
x.

We highlight two key differences from x · x test. First,

σ(−y✓> x) gives points with high training loss more influ-

ence, revealing that outliers can dominate the model pa-

rameters. Second, the weighted covariance matrix H − 1

✓̂
measures the“resistance” of theother training points to the

removal of z; if r ✓L (z, ✓̂) points in a direction of little

variation, its influence will be higher since moving in that

direction will not significantly increase the loss on other

training points. As we show in Fig 1, these differences

mean that influence functions capture the effect of model

training much more accurately than nearest neighbors.

3. Efficiently Calculating Influence

There are two computational challenges to using

I up,loss(z, ztest) = − r ✓L (ztest, ✓̂)> H − 1

✓̂
r ✓L (z, ✓̂). First, it

requires forming and inverting H ✓̂ = 1
n

P n
i = 1 r

2
✓L (zi , ✓̂),

the Hessian of the empirical risk. With n training points

and ✓ 2 Rp, this requires O(np2 + p3) operations, which

is too expensive for models likedeep neural networks with

millions of parameters. Second, we often want to calculate

I up,loss(zi , ztest) across all training points zi .

Thefirst problem iswell-studied in second-order optimiza-

tion. The idea is to avoid explicitly computing H − 1

✓̂
; in-

stead, we use implicit Hessian-vector products (HVPs) to

efficiently approximatestest
def
= H − 1

✓̂
r ✓L (ztest, ✓̂) and then

compute I up,loss(z, ztest) = −stest · r ✓L (z, ✓̂). This also

solves the second problem: for each test point of inter-

est, we can precompute stest and then efficiently compute

−stest · r ✓L (zi , ✓̂) for each training point zi .

We discuss two techniques for approximating stest, both

relying on the fact that the HVP of a single term in H ✓̂ ,

[r 2
✓L (zi , ✓̂)]v, can becomputed for arbitrary v in thesame

time that r ✓L (zi , ✓̂) would take, which is typically O(p)

(Pearlmutter, 1994).

Conjugate gradients (CG). The first technique is a stan-

dard transformation of matrix inversion into an optimiza-

tion problem. Since H ✓̂ 0 by assumption, H − 1

✓̂
v ⌘

argmint {
1
2
t> H ✓̂ t − v> t} . We can solve this with CG

approaches that only require the evaluation of H ✓̂ t, which

takesO(np) time, without explicitly forming H ✓̂ . Whilean

exact solution takes p CG iterations, in practice we can get

a good approximation with fewer iterations; see Martens

(2010) for moredetails.

Stochastic estimation. With large datasets, standard CG

can be slow; each iteration still goes through all n train-

ing points. We use a method developed by Agarwal et al.

(2016) to get an estimator that only samples a single point

per iteration, which results in significant speedups.

• Justify harmful data

Understanding Black-box Predictions via InfluenceFunctions

Figure 1. Components of influence. (a) What is the effect of the training loss and H − 1

✓̂
terms in I up,loss? Here, we plot I up,loss against

variants that are missing these terms and show that they are necessary for picking up the truly influential training points. For these

calculations, we use logistic regression to distinguish 1’s from 7’s in MNIST (LeCun et al., 1998), picking an arbitrary test point ztest;

similar trends hold across other test points. Green dots are train images of the same label as the test image (7) while red dots are 1’s.

Left: Without the train loss term, we overestimate the influence of many training points: the points near the y=0 line should have

I up,loss close to 0, but instead have high influencewhen we remove the train loss term. Mid: Without H − 1

✓̂
, all green training points are

helpful (removing each point increases test loss) and all red pointsareharmful (removing each point decreases test loss). This isbecause

8x, x ⌫0 (all pixel values arepositive), so x ·x test ≥ 0, but it is incorrect: many harmful training pointsactually share thesame label as

ztest. Seepanel (b). Right: Without training lossor H − 1

✓̂
, what is left is thescaled Euclidean inner product ytesty ·σ(−ytest✓

> x test) ·x>
testx ,

which fails to accurately capture influence; thescatter plot deviatesquite far from thediagonal. (b) Thetest imageand aharmful training

image with the same label. To the model, they look very different, so the presence of the training image makes the model think that the

test image is less likely to bea7. TheEuclidean inner product doesnot pick up on theseless intuitive, but important, harmful influences.

space (e.g., Ribeiro et al. (2016)); if all points have the

samenorm, this isequivalent to choosing x with the largest

x ·x test. For intuition, wecompare this to I up,loss(z, ztest) on

alogistic regression model and show that influence ismuch

more accurate at accounting for the effect of training.

Let p(y | x) = σ(y✓> x), with y 2 {−1, 1} and σ(t) =
1

1+ exp(− t)
. We seek to maximize the probability of the

training set. For a training point z = (x, y), L (z, ✓) =

log(1 + exp(−y✓> x)), r ✓L (z, ✓) = −σ(−y✓> x)yx,

and H ✓ = 1
n

P n
i = 1 σ(✓> x i)σ(−✓> x i)x i x

>
i . From (2),

I up,loss(z, ztest) is:

−ytesty · σ(−ytest✓
> x test) · σ(−y✓> x) · x>

testH
− 1

✓̂
x.

We highlight two key differences from x · x test. First,

σ(−y✓> x) gives points with high training loss more influ-

ence, revealing that outliers can dominate the model pa-

rameters. Second, the weighted covariance matrix H − 1

✓̂
measures the“resistance” of theother training points to the

removal of z; if r ✓L (z, ✓̂) points in a direction of little

variation, its influence will be higher since moving in that

direction will not significantly increase the loss on other

training points. As we show in Fig 1, these differences

mean that influence functions capture the effect of model

training much more accurately than nearest neighbors.

3. Efficiently Calculating Influence

There are two computational challenges to using

I up,loss(z, ztest) = − r ✓L (ztest, ✓̂)> H − 1

✓̂
r ✓L (z, ✓̂). First, it

requires forming and inverting H ✓̂ = 1
n

P n
i = 1 r

2
✓L (zi , ✓̂),

the Hessian of the empirical risk. With n training points

and ✓ 2 Rp, this requires O(np2 + p3) operations, which

is too expensive for models likedeep neural networks with

millions of parameters. Second, we often want to calculate

I up,loss(zi , ztest) across all training points zi .

Thefirst problem iswell-studied in second-order optimiza-

tion. The idea is to avoid explicitly computing H − 1

✓̂
; in-

stead, we use implicit Hessian-vector products (HVPs) to

efficiently approximatestest
def
= H − 1

✓̂
r ✓L (ztest, ✓̂) and then

compute I up,loss(z, ztest) = −stest · r ✓L (z, ✓̂). This also

solves the second problem: for each test point of inter-

est, we can precompute stest and then efficiently compute

−stest · r ✓L (zi , ✓̂) for each training point zi .

We discuss two techniques for approximating stest, both

relying on the fact that the HVP of a single term in H ✓̂ ,

[r 2
✓L (zi , ✓̂)]v, can becomputed for arbitrary v in thesame

time that r ✓L (zi , ✓̂) would take, which is typically O(p)

(Pearlmutter, 1994).

Conjugate gradients (CG). The first technique is a stan-

dard transformation of matrix inversion into an optimiza-

tion problem. Since H ✓̂ 0 by assumption, H − 1

✓̂
v ⌘

argmint {
1
2
t> H ✓̂ t − v> t} . We can solve this with CG

approaches that only require the evaluation of H ✓̂ t, which

takesO(np) time, without explicitly forming H ✓̂ . Whilean

exact solution takes p CG iterations, in practice we can get

a good approximation with fewer iterations; see Martens

(2010) for moredetails.

Stochastic estimation. With large datasets, standard CG

can be slow; each iteration still goes through all n train-

ing points. We use a method developed by Agarwal et al.

(2016) to get an estimator that only samples a single point

per iteration, which results in significant speedups.

17

Data Attribution

• Characterize training data properties and value

Model

(Inference)

Test
the

Consumer

Price

Index.

[Grosse et al, 2023]

Train

Training Data

Inflation is often

measured using

Inflation is most

commonly measured

using the Consumer

Price Index (CPI) or

the Producer Price

Index (PPI).

• Justify harmful data

18

The Attribution Problem

Train

Model

(Inference)

Test
Components

Training Data

Test

Output

Input

Features

19

Component Attribution

• Why this output for these model components?

• Component attribution analyzes how model components contribute to its output

– Components have various definitions, e.g., neurons, attention heads, etc.

Model

(Inference)

Test
Input

Test

Output

Components

20

Component Attribution

• Why this output for these model components?

• Component attribution analyzes how model components contribute to its output

– Components have various definitions, e.g., neurons, attention heads, etc.

Model

(Inference)

Test
Mary

[Wang et al, 2022]

ComponentsWhen Mary and John

went to the store John

gave a bottle of milk to

21

Three Types of Attribution

Train

Components
Model

Data

Attribution

Component

Attribution

(Inference)

Test

Feature

AttributionTraining Data

Test

Output

Input

Features

22

Formalization of The Attribution Problem

Train

(Inference)

Test

Model

23

Outline

• The Attribution Problem

• Attribution Methods

• A Unified View of Attribution

• Cross-Aspect Innovation and Connections to Other Areas of AI

24

How Are These Attribution Results Achieved?

Train

Components
Model

Data

Attribution

Component

Attribution

(Inference)

Test

Feature

AttributionTraining Data

?
Test

Output

Input

Features

25

Feature Attribution Methods

Model

(Inference)

Test

Feature

Attribution

Test

Output

Input

Features

Methods

26

Perturbation-Based Feature Attribution

• Direct Perturbation

– Perturb features and observe output changes

Model

Test

Test

27

Perturbation-Based Feature Attribution

• Direct Perturbation

– Perturb features and observe output changes

– Occlusion

Model

Test

Test

Saliency Map

[Zeiler and Fergus, 2014]

28

Perturbation-Based Feature Attribution

• Feature interactions?

• Game-Theoretic Perturbation

– Features as players, model processing as a game. Fairly distribute outcome

– 2𝑑 marginal contributions

[Shapley, 1953]

ModelTest

Test

Marginal Contributions

Aggregate all the marginal

contributions

Shapley Value

29

Perturbation-Based Feature Attribution

• Perturbation Mask Learning

– Perturbations can be seen as binary masks

– Why not make them continuous and learnable?

– The masking model can be applied to other inputs

[Dabkowski & Gal, 2017, Petsiuk et al., 2018]

ModelTest

Masking

Model

PETSIUK, DAS, SAENKO: RISE: RANDOMIZED INPUT SAMPLING FOR EXPLANATION 5

Figure3: Overview of RISE: Input image I iselement-wise multiplied with random masks Mi and the

masked images are fed to thebasemodel. Thesaliency map isalinear combination of themasks where

theweights come from the score of the target class corresponding to the respectivemasked inputs.

gionsto theprediction. In oneof theearly works [31], Zeiler et al. visualize the internal rep-

resentation learned by CNNsusing deconvolutional networks. Other approaches [17, 25, 30]

have tried to synthesize an input (an image) that highly activates a neuron. The Class Ac-

tivation Mapping (CAM) approach [33] achieves class-specific importance of each location

of an image by computing a weighted sum of the feature activation values at that location

across all channels. However, theapproach can only be applied to a particular kind of CNN

architecture where a global average pooling is performed over convolutional feature map

channels immediately prior to the classification layer. Grad-CAM [23] extends CAM by

weighing thefeature activation valuesat every location with theaveragegradient of theclass

score (w.r.t. the feature activation values) for every feature map channel. Zhang et al. [32]

introduce a probabilistic winner-take-all strategy to compute top-down importance of neu-

rons towards model predictions. Fong et al. [8] and Cao et al. [2] learn a perturbation mask

that maximally affects themodel’s output by backpropagating the error signals through the

model. However, all of theabovemethods [2, 8, 17, 23, 25, 30, 32, 33] assume access to the

internals of thebase model to obtain feature activation values, gradients or weights. RISE is

a more general framework as the importance map is obtained with access to only the input

and output of the base model.

3 Randomized Input Sampling for Explanation (RISE)

One way to measure the importance of an image region is to obscure or ‘perturb’ it and

observe how much this affects the black box decision. For example, this can be done by

setting pixel intensities to zero [8, 21, 31], blurring the region [8] or by adding noise. In

this work we estimate the importance of pixels by dimming them in random combinations,

reducing their intensities down to zero. We model this by multiplying an image with a [0,1]

valued mask. The mask generation process isdescribed in detail in section 3.2.

3.1 Random Masking

Let f : I ! R beablack-box model, that for agiven input from I producesscalar confidence

score. In our case, I is the space of color images I = { I | I : L ! R3} of size H ⇥ W

PETSIUK, DAS, SAENKO: RISE: RANDOMIZED INPUT SAMPLING FOR EXPLANATION 5

Figure3: Overview of RISE: Input image I iselement-wise multiplied with random masks Mi and the

masked images are fed to thebasemodel. Thesaliency map isalinear combination of themasks where

theweights come from the score of the target class corresponding to the respectivemasked inputs.

gionsto theprediction. In oneof theearly works [31], Zeiler et al. visualize the internal rep-

resentation learned by CNNsusing deconvolutional networks. Other approaches [17, 25, 30]

have tried to synthesize an input (an image) that highly activates a neuron. The Class Ac-

tivation Mapping (CAM) approach [33] achieves class-specific importance of each location

of an image by computing a weighted sum of the feature activation values at that location

across all channels. However, theapproach can only be applied to a particular kind of CNN

architecture where a global average pooling is performed over convolutional feature map

channels immediately prior to the classification layer. Grad-CAM [23] extends CAM by

weighing thefeature activation valuesat every location with theaveragegradient of theclass

score (w.r.t. the feature activation values) for every feature map channel. Zhang et al. [32]

introduce a probabilistic winner-take-all strategy to compute top-down importance of neu-

rons towards model predictions. Fong et al. [8] and Cao et al. [2] learn a perturbation mask

that maximally affects themodel’s output by backpropagating the error signals through the

model. However, all of theabovemethods [2, 8, 17, 23, 25, 30, 32, 33] assume access to the

internals of thebase model to obtain feature activation values, gradients or weights. RISE is

a more general framework as the importance map is obtained with access to only the input

and output of the base model.

3 Randomized Input Sampling for Explanation (RISE)

One way to measure the importance of an image region is to obscure or ‘perturb’ it and

observe how much this affects the black box decision. For example, this can be done by

setting pixel intensities to zero [8, 21, 31], blurring the region [8] or by adding noise. In

this work we estimate the importance of pixels by dimming them in random combinations,

reducing their intensities down to zero. We model this by multiplying an image with a [0,1]

valued mask. The mask generation process isdescribed in detail in section 3.2.

3.1 Random Masking

Let f : I ! R beablack-box model, that for agiven input from I producesscalar confidence

score. In our case, I is the space of color images I = { I | I : L ! R3} of size H ⇥ W

PETSIUK, DAS, SAENKO: RISE: RANDOMIZED INPUT SAMPLING FOR EXPLANATION 5

Figure3: Overview of RISE: Input image I iselement-wise multiplied with random masksMi and the

masked images are fed to thebasemodel. Thesaliency map isalinear combination of themasks where

theweights come from the score of the target class corresponding to the respectivemasked inputs.

gionsto theprediction. In oneof theearly works [31], Zeiler et al. visualize the internal rep-

resentation learned by CNNsusing deconvolutional networks. Other approaches [17, 25, 30]

have tried to synthesize an input (an image) that highly activates a neuron. The Class Ac-

tivation Mapping (CAM) approach [33] achieves class-specific importance of each location

of an image by computing a weighted sum of the feature activation values at that location

across all channels. However, theapproach can only be applied to a particular kind of CNN

architecture where a global average pooling is performed over convolutional feature map

channels immediately prior to the classification layer. Grad-CAM [23] extends CAM by

weighing thefeature activation valuesat every location with theaveragegradient of theclass

score (w.r.t. the feature activation values) for every feature map channel. Zhang et al. [32]

introduce a probabilistic winner-take-all strategy to compute top-down importance of neu-

rons towards model predictions. Fong et al. [8] and Cao et al. [2] learn a perturbation mask

that maximally affects themodel’s output by backpropagating the error signals through the

model. However, all of theabovemethods [2, 8, 17, 23, 25, 30, 32, 33] assume access to the

internals of thebase model to obtain feature activation values, gradients or weights. RISE is

a more general framework as the importance map is obtained with access to only the input

and output of the base model.

3 Randomized Input Sampling for Explanation (RISE)

One way to measure the importance of an image region is to obscure or ‘perturb’ it and

observe how much this affects the black box decision. For example, this can be done by

setting pixel intensities to zero [8, 21, 31], blurring the region [8] or by adding noise. In

this work we estimate the importance of pixels by dimming them in random combinations,

reducing their intensities down to zero. We model this by multiplying an image with a [0,1]

valued mask. The mask generation process isdescribed in detail in section 3.2.

3.1 Random Masking

Let f : I ! R beablack-box model, that for agiven input from I producesscalar confidence

score. In our case, I is the space of color images I = { I | I : L ! R3} of size H ⇥ W

PETSIUK, DAS, SAENKO: RISE: RANDOMIZED INPUT SAMPLING FOR EXPLANATION 5

Figure3: Overview of RISE: Input image I iselement-wise multiplied with random masksMi and the

masked images are fed to thebasemodel. Thesaliency map isalinear combination of themaskswhere

theweights come from the score of the target class corresponding to the respectivemasked inputs.

gionsto theprediction. In oneof theearly works [31], Zeiler et al. visualize the internal rep-

resentation learned by CNNsusing deconvolutional networks. Other approaches [17, 25, 30]

have tried to synthesize an input (an image) that highly activates a neuron. The Class Ac-

tivation Mapping (CAM) approach [33] achieves class-specific importance of each location

of an image by computing a weighted sum of the feature activation values at that location

across all channels. However, the approach can only be applied to a particular kind of CNN

architecture where a global average pooling is performed over convolutional feature map

channels immediately prior to the classification layer. Grad-CAM [23] extends CAM by

weighing thefeature activation valuesat every location with theaveragegradient of theclass

score (w.r.t. the feature activation values) for every feature map channel. Zhang et al. [32]

introduce a probabilistic winner-take-all strategy to compute top-down importance of neu-

rons towards model predictions. Fong et al. [8] and Cao et al. [2] learn a perturbation mask

that maximally affects themodel’s output by backpropagating the error signals through the

model. However, all of theabovemethods [2, 8, 17, 23, 25, 30, 32, 33] assume access to the

internals of thebase model to obtain feature activation values, gradients or weights. RISE is

a more general framework as the importance map is obtained with access to only the input

and output of the base model.

3 Randomized Input Sampling for Explanation (RISE)

One way to measure the importance of an image region is to obscure or ‘perturb’ it and

observe how much this affects the black box decision. For example, this can be done by

setting pixel intensities to zero [8, 21, 31], blurring the region [8] or by adding noise. In

this work we estimate the importance of pixels by dimming them in random combinations,

reducing their intensities down to zero. We model this by multiplying an image with a [0,1]

valued mask. The mask generation process isdescribed in detail in section 3.2.

3.1 Random Masking

Let f : I ! R beablack-box model, that for agiven input from I producesscalar confidence

score. In our case, I is the space of color images I = { I | I : L ! R3} of size H ⇥ W

Saliency Map

Learned

Masking

Model

30

Gradient-Based Feature Attribution

• Parameter gradients for model training vs. features gradients for attribution

• Measure output sensitivity to input features; No updates to model parameters

[Dabkowski & Gal, 2017, Petsiuk et al., 2018]

Model

Train

Test

Backward

31

Gradient-Based Feature Attribution

• “Vanilla” Gradients

Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

[Simonyan et al., 2013, Adebayo et al., 2018]

32

Gradient-Based Feature Attribution

Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

[Adebayo et al., 2018]

• Variations of gradient-based methods

33

Gradient-Based Feature Attribution

Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

[Adebayo et al., 2018, Smilkov et al., 2017]

• SmoothGrad

– Smooth over noisy versions of the input to enhance robustness
Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

+Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

+Original

Image Gradient SmoothGrad

Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compar ed to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and itsvariants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should the outputs besimilar, however,
wecan infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not behelpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which werandomly permuted all labels. If asaliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.

2

+

}
Original

Image Gradient SmoothGrad
Guided

BackProp
Guided

GradCAM

Integrated

Gradients

Integrated

Gradients

SmoothGrad

Gradient

Input
Edge

Detector

Junco

Bird

Corn

Wheaten

Terrier

Figure 1: Saliency maps for some common methods compared to an edge detector. Saliency
masks for 3 different inputs for an Inception v3 model trained on ImageNet. We see that an edge
detector produces outputs that are strikingly similar to the outputs of some saliency methods. In
fact, edge detectors can also produce masks that highlight features which coincide with what appears
to be relevant to amodel’s class prediction. Interestingly, we find that the methods that are most
similar to an edge detector, i.e., Guided Backprop and its variants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on themodel, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure 1 compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and adata randomization test.

Themodel parameter randomization test compares theoutput of asaliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect itsoutput to differ substantially between the two cases. Should theoutputsbesimilar, however,
we can infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not be helpful for tasks such as model
debugging that inevitably depend on the model.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which we randomly permuted all labels. If a saliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying amethod in practice.

Our contr ibutions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test. Both
tests applies broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of thedata that the model was trained on.

2

35

Linear Approximations for Feature Attribution

[Ribeiro et al., 2016, Santiago, 2020]

• If we cannot understand the complex AI models, what model can we understand?

• Local approximation

36

Linear Approximations for Feature Attribution

[Ribeiro et al., 2016, Santiago, 2020]

• If we cannot understand the complex AI models, what model can we understand?

• Local approximation

• We don’t even need actual input features, only binary indicators

(a) Husky classified as wolf (b) Explanat ion

F igur e 11: R aw dat a and ex planat ion of a bad

m odel ’s pr ed ict ion in t he “ H usky vs W ol f ” t ask .

Before After

Trusted the bad model 10 out of 27 3 out of 27

Snow as a potent ial feature 12 out of 27 25 out of 27

Table 2: “ H usky vs W olf ” exper im ent r esul t s.

t o work well in the real world, (2) why, and (3) how do
they think the algorit hm is able to dist inguish between these

photos of wolves and huskies. Aft er get t ing these responses,
we show the same images with the associated explanat ions,

such as in Figure 11b, and ask the same quest ions.
Since this task requires some familiarity with the not ion of

spurious correlat ions and generalizat ion, the set of subject s
for this experiment were graduate students who have taken at

least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their

reasoning and determine if each subject ment ioned snow,
background, or equivalent as a feature the model may be

using. We pick the majority to decide whether the subject
was correct about the insight , and report these numbers

before and after showing the explanat ions in Table 2.
Before observing the explanat ions, more than a third

t rusted the classifier, and a lit t le less than half ment ioned
the snow pat tern as something the neural network was using
– alt hough all speculated on other pat t erns. A ft er examining

the explanat ions, however, almost all of t he subject s ident i-
fied the correct insight , with much more certainty that it was

a determining factor. Furt her, t he t rust in the classifier also
dropped substant ially. A lt hough our sample size is small,

this experiment demonst rates the ut ility of explaining indi-
vidual predict ions for get t ing insights into classifiers knowing

when not to t rust them and why.

7. RELATED WORK
T he problems with relying on validat ion set accuracy as

the primary measure of t rust have been well studied. Pract i-

t ioners consistent ly overest imate their model’s accuracy [20],
propagate feedback loops [23], or fail to not ice data leaks [14].

In order to address these issues, researchers have proposed
tools like Gestalt [21] and Modelt racker [1], which help users

navigate individual instances. T hese tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predict ions.

Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigat ing larger datasets.

Some recent work aims to ant icipate failures in machine

learning, specifically for vision tasks [3, 29]. Let t ing users

know when the systems are likely to fail can lead to an
increase in t rust , by avoiding “ silly mistakes” [8]. T hese

solut ions eit her require addit ional annotat ions and feature
engineering that is specific to vision tasks or do not provide

insight into why a decision should not be t rusted. Further-
more, they assume that t he current evaluat ion met rics are
reliable, which may not be the case if problems such as data

leakage are present . Other recent work [11] focuses on ex-
posing users to di↵ erent kinds of mistakes (our pick step).

Interest ingly, the subjects in their study did not not ice the
serious problems in the 20 newsgroups data even after look-

ing at many mistakes, suggest ing that examining raw data
is not sufficient . Note that Groce et al. [11] are not alone in

this regard, many researchers in the field have unwit t ingly
published classifiers that would not generalize for this task.

Using LIME, we show that even non-experts are able to
ident ify these irregularit ies when explanat ions are present .

Furt her, LIME can complement these exist ing systems, and
allow users to assess t rust even when a predict ion seems

“ correct ” but is made for the wrong reasons.
Recognizing the ut ility of explanat ions in assessing t rust ,

many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models

may be appropriate for some domains, they may not apply
equally well t o others (e.g. a supersparse linear model [26]

with 5 − 10 features is unsuitable for text applicat ions). In-
terpretability, in these cases, comes at the cost of flexibility,

accuracy, or efficiency. For text , EluciDebug [16] is a full
human-in-t he-loop system that shares many of our goals
(interpretability, faithfulness, et c). However, t hey focus on

an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detect ion to produce

candidate alignments [13] or at t ent ion [28] are able to pro-
duce explanat ions for their predict ions. T hese are, however,

const rained to specific neural network architectures or inca-
pable of detect ing “ non object ” part s of the images. Here we

focus on general, model-agnost ic explanat ions that can be
applied to any classifier or regressor that is appropriate for

the domain - even ones that are yet to be proposed.
A common approach to model-agnost ic explanat ion is learn-

ing a potent ially interpretable model on the predict ions of
the original model [2, 7, 22]. Having the explanat ion be a

gradient vector [2] captures a similar locality intuit ion to
that of LIME. However, interpret ing the coefficients on the

gradient is difficult , part icularly for confident predict ions
(where gradient is near zero). Further, t hese explanat ions ap-

proximate the original model global ly, t hus maintaining local
fidelity becomes a significant challenge, as our experiments

demonst rate. In cont rast , LIME solves the much more feasi-
ble task of finding a model that approximates the original
model local ly. T he idea of perturbing input s for explanat ions

has been explored before [24], where the aut hors focus on
learning a specific contr ibution model, as opposed to our

general framework. None of these approaches explicit ly take
cognit ive limit at ions into account , and thus may produce

non-interpretable explanat ions, such as a gradients or linear
models with thousands of non-zero weights. T he problem

becomes worse if t he original features are nonsensical t o
humans (e.g. word embeddings). In cont rast , LIME incor-

porates interpretability both in the opt imizat ion and in our
not ion of interpretable representation, such that domain and

task specific interpretability criteria can be accommodated.

Husky? Wolf !

37

Feature Attribution Methods

Model

(Inference)

Test

Feature

Attribution

Test

Output

Methods

Perturbations

Linear

Approximations

Gradients
Input

Features

38

How About Data Attribution?

Train

Model
Data

Attribution

(Inference)

Test
Input

Training Data

Test

Output

Perturbations

Linear

Approximations

Gradients

Methods

39

Perturbation-Based Data Attribution

• Leave-One-Out (Direct Perturbation)

– Remove one training point at a time, retrain model, and observe output changes

– Computationally expensive, retrain n times

Model

Train

Training Data

Model

LOO Data

Retrain

[Cook & Weisberg, 1982]

Test

40

Perturbation-Based Data Attribution

• Game-Theoretic Perturbation

– Capture training data interactions

Model

Train

Training Data

Model

LOO Data

Retrain

Test

Aggregate all the marginal

contributions

Data Shapley

Marginal Contribution

[Ghorbani & Zou, 2019]

– 2𝑛 marginal contributions, each with a retraining

41

Gradient-Based Data Attribution

• No retrainings (perturbations)

– Gradients for measuring similarity between data points

– Dot products of gradients evaluated at the training and test points

[Charpiat et al., 2019]

Train Backward

ModelTest

42

Gradient-Based Data Attribution

• Influence Functions

– Approximate LOO by lifting one data point

– Compute Hessian matrix

[Koh & Liang, 2017]

Train Backward

ModelTest

44

Linear Approximations for Data Attribution

• The Datamodel

– Skip model training, directly predict model outputs from training data

– Collect counterfactual data for training

Training Data

Train

Model

(Inference)

Test
Input Test

Output

[Ilyas et al., 2022]

45

Data Attribution Methods

Train

Model

Methods

Data

Attribution

(Inference)

Test
Input

Training Data

Test

Output

Perturbations

Linear

Approximations

Gradients

46

How About Component Attribution?

Components
Model

Component

Attribution

(Inference)

Test Test

Output
Input

Perturbations

Linear

Approximations

Gradients

MethodsMethods

47

Perturbation-Based Component Attribution

• Casual mediation analysis

– Perturb (replace with dummy values) components and observe output changes

– Find the casual components, e.g., subnetworks

Model
Components

Model
Components

Test

[Pearl, 2022]

48

Perturbation-Based Component Attribution

• Game-Theoretic Perturbation

– Capture component interactions

Model
Components

Model
Components

Test

Aggregate all the marginal

contributions

Neuron Shapley

Marginal Contribution

[Ghorbani & Zou, 2020]

49

Perturbation-Based Component Attribution

• Mask Learning and Subnetwork Probing

– Use a learnable mask for selecting neurons

[Cao, 2021]

Learned Mask

Model
Components

Model
Components

Test

Mask

50

Perturbation-Based Component Attribution

• Casual mediation analysis

– Perturb inputs

– A three-run patching paradigm: original, perturbed, and restored

Model
Components

Model
Components

[Meng et al., 2022]

Test

51

Gradient-Based Component Attribution

• Gradients for approximating the patching paradigm

• An underexplored area

[Nanda, 2023]

52

Linear Approximations for Component Attribution

• A linear model to directly predict test output with altered components

– Collect counterfactual data for training

Components
Model

(Inference)

Test
Input Test

Output

[Shah et al., 2024]

53

Outline

• The Attribution Problem

• Attribution Methods

• A Unified View of Attribution

• Cross-Aspect Innovation and Connections to Other Areas of AI

54

A Unified View of Attribution

Train

Components

Perturbations

Linear

Approximations

Gradients
Model

Methods

Data

Attribution

Component

Attribution

(Inference)

TestInput

Features

Feature

AttributionTraining Data

Test

Output

57

Outline

• The Attribution Problem

• Attribution Methods

• A Unified View of Attribution

• Cross-Aspect Innovation and Connections to Other Areas of AI

58

Cross-Aspect Innovation

• Advanced gradient-based method for component attribution

– Utilize the Hessian matrix for better approximation with second order information

59

Cross-Aspect Innovation

• A holistic view of attribute to multiple perspectives

– A specific model behavior may be explained in terms of features, data, and

components jointly

60

Cross-Aspect Innovation

• A theoretical unification

– A framework in terms of local function approximation for feature attribution

– Generalize to data and component attribution?

[Han et al., 2022]

61

Connections to Other Areas of AI

• Model editing

– Goal: precisely edit model knowledge without retraining

– Application: correct model mistakes, analogous to fixing bugs in software

– Connections:

• Better attribution implies better editing

• Locate influencial components, spurious feature-label correlations, and problematic

training data points can provide insights for editing

64

Summary

Perturbations

Linear

Approximations

Gradients

Train

Components
Model

Methods

Data

Attribution

Component

Attribution

(Inference)

TestInput

Features

Feature

AttributionTraining Data

Test

Output

• The attribution problem and three aspects of attribution

• A unified view of attribution

• Cross-aspect innovation and potential theoretical unification

• Connections to model editing

66

References

• Zhang, S., Han, T., Bhalla, U., & Lakkaraju, H. (2025). Building Bridges, Not Walls--Advancing Interpretability by Unifying

Feature, Data, and Model Component Attribution.

• Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). "Deepface: Closing the gap to human-level performance in face

verification." Computer Vision and Pattern Recognition.

• Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). "Training language models to

follow instructions with human feedback." Advances in Neural Information Processing Systems.

• Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., ... & Jumper, J. M. (2024). Accurate structure prediction

of biomolecular interactions with AlphaFold 3. Nature.

• Goldstein, A., Wang, H., Niekerken, L. et al. (2025). A unified acoustic-to-speech-to-language embedding space captures

the neural basis of natural language processing in everyday conversations. Nat Hum Behav.

67

References

• Wachter, S., Mittelstadt, B., & C Russell. (2018) Counterfactual explanations without opening the black box: automated

decisions and the gdpr. Harvard Journal of Law and Technology, 31(2): 841–887

• Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data

mining (pp. 1135-1144).

• Koh, P. W., & Liang, P. (2017, July). Understanding black-box predictions via influence functions. In International

conference on machine learning (pp. 1885-1894). PMLR.

• Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini, A., ... & Bowman, S. R. (2023). Studying large language model

generalization with influence functions. arXiv preprint arXiv:2308.03296.

• Wang, K., Variengien, A., Conmy, A., Shlegeris, B., & Steinhardt, J. (2022). Interpretability in the wild: a circuit for indirect

object identification in gpt-2 small. arXiv preprint arXiv:2211.00593.

• Shapley, L. S. (1953). A value for n-person games.

• Dabkowski, P., & Gal, Y. (2017). Real time image saliency for black box classifiers. Advances in neural information

processing systems, 30.

• Petsiuk, V., Das, A., & Saenko, K. (2018). Rise: Randomized input sampling for explanation of black-box models. arXiv

preprint arXiv:1806.07421.

68

References

• Simonyan, K., Vedaldi, A., & Zisserman, A. (2013) Deep inside convolutional networks: Visualising image classification

models and saliency maps. arXiv preprint arXiv:1312.6034

• Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018) Sanity checks for saliency maps. Advances

in neural information processing systems, 31.

• Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. arXiv

preprint arXiv:1706.03825.

• Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks. In International conference on

machine learning (pp. 3319-3328). PMLR.

• Santiago, F. (2020) Model interpretability — Making your model confesses: LIME. Medium,.

https://santiagof.medium.com/model-interpretability-making-your-model-confess-lime-89db7f70a72b

• Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression.

• Ghorbani, A., & Zou, J. (2019, May). Data shapley: Equitable valuation of data for machine learning. In International

conference on machine learning (pp. 2242-2251). PMLR.

• Charpiat, G., Girard, N., Felardos, L., & Tarabalka, Y. (2019). Input similarity from the neural network

perspective. Advances in Neural Information Processing Systems, 32.

• Pruthi, G., Liu, F., Kale, S., & Sundararajan, M. (2020). Estimating training data influence by tracing gradient

descent. Advances in Neural Information Processing Systems, 33, 19920-19930.

• Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., & Madry, A. (2022). Datamodels: Predicting predictions from training

data. arXiv preprint arXiv:2202.00622.

69

References

• Pearl, J. (2022). Direct and indirect effects. In Probabilistic and causal inference: the works of Judea Pearl (pp. 373-392).

• Ghorbani, A., & Zou, J. Y. (2020). Neuron shapley: Discovering the responsible neurons. Advances in neural information

processing systems, 33, 5922-5932.

• Cao, S., Sanh, V., & Rush, A. M. (2021). Low-complexity probing via finding subnetworks. Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 960–966

• Meng, K., Bau, D., Andonian, A., & Belinkov, Y. (2022). Locating and editing factual associations in gpt. Advances in

neural information processing systems, 35, 17359-17372.

• Nanda, N. (2023). Attribution patching: Activation patching at industrial scale. URL: https://www. neelnanda.

io/mechanistic-interpretability/attribution-patching.

• Shah, H., Ilyas, A., & Mądry, A. (2024, July). Decomposing and editing predictions by modeling model computation.

In Proceedings of the 41st International Conference on Machine Learning (pp. 44244-44292).

• Han, T., Srinivas, S., & Lakkaraju, H. (2022). Which explanation should i choose? a function approximation perspective to

characterizing post hoc explanations. Advances in neural information processing systems, 35, 5256-5268.

Q & A

Appendix

72

Notations

73

Methods Summary

74

Abstract

As AI systems continue to grow in scale and complexity, understanding their behaviors

becomes increasingly critical. In this talk, I will explore three complementary perspectives on

AI interpretability: feature attribution, which analyzes how input features influence predictions;

data attribution, which traces the impact of training data on model behavior; and component

attribution, which investigates the role of internal model components such as neurons and

layers. I will cover the core ideas and recent advances in each of these areas, including

perturbation-based methods, gradient-based approaches, and linear approximation

techniques. In addition, I will highlight connections among the three attribution aspects and

propose a unified view that reveals their shared foundations. This talk aims to provide a

structured overview of the current landscape of attribution methods, equipping researchers

and practitioners with practical tools and conceptual frameworks to interpret AI systems from

multiple perspectives—and to apply these insights in real-world contexts such as model

debugging, editing, and regulation.

	Slide 1: Interpreting AI Systems Through Features, Data, and Model Components: A Tour of Attribution Methods
	Slide 2: The AI Advancement
	Slide 3: The AI Advancement
	Slide 4: The AI Advancement
	Slide 5: The “Why” Question
	Slide 6: Why Is The “Why” Question Important?
	Slide 7: What Specific “Why” Questions Can We Ask?
	Slide 8: Outline
	Slide 9: Outline
	Slide 10: The Attribution Problem
	Slide 11: Feature Attribution
	Slide 12: Feature Attribution
	Slide 13: Feature Attribution
	Slide 14: Data Attribution
	Slide 15: Data Attribution
	Slide 16: Data Attribution
	Slide 17: Data Attribution
	Slide 18: The Attribution Problem
	Slide 19: Component Attribution
	Slide 20: Component Attribution
	Slide 21: Three Types of Attribution
	Slide 22: Formalization of The Attribution Problem
	Slide 23: Outline
	Slide 24: How Are These Attribution Results Achieved?
	Slide 25: Feature Attribution Methods
	Slide 26: Perturbation-Based Feature Attribution
	Slide 27: Perturbation-Based Feature Attribution
	Slide 28: Perturbation-Based Feature Attribution
	Slide 29: Perturbation-Based Feature Attribution
	Slide 30: Gradient-Based Feature Attribution
	Slide 31: Gradient-Based Feature Attribution
	Slide 32: Gradient-Based Feature Attribution
	Slide 33: Gradient-Based Feature Attribution
	Slide 35: Linear Approximations for Feature Attribution
	Slide 36: Linear Approximations for Feature Attribution
	Slide 37: Feature Attribution Methods
	Slide 38: How About Data Attribution?
	Slide 39: Perturbation-Based Data Attribution
	Slide 40: Perturbation-Based Data Attribution
	Slide 41: Gradient-Based Data Attribution
	Slide 42: Gradient-Based Data Attribution
	Slide 44: Linear Approximations for Data Attribution
	Slide 45: Data Attribution Methods
	Slide 46: How About Component Attribution?
	Slide 47: Perturbation-Based Component Attribution
	Slide 48: Perturbation-Based Component Attribution
	Slide 49: Perturbation-Based Component Attribution
	Slide 50: Perturbation-Based Component Attribution
	Slide 51: Gradient-Based Component Attribution
	Slide 52: Linear Approximations for Component Attribution
	Slide 53: Outline
	Slide 54: A Unified View of Attribution
	Slide 57: Outline
	Slide 58: Cross-Aspect Innovation
	Slide 59: Cross-Aspect Innovation
	Slide 60: Cross-Aspect Innovation
	Slide 61: Connections to Other Areas of AI
	Slide 64: Summary
	Slide 66: References
	Slide 67: References
	Slide 68: References
	Slide 69: References
	Slide 70: Q & A
	Slide 71: Appendix
	Slide 72: Notations
	Slide 73: Methods Summary
	Slide 74: Abstract

