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How Post-Training Reshapes LLMs
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• Post-training effects are usually evaluated externally through the model output

• How about internally? A mechanistic view

Knowledge Truthfulness

Refusal Confidence
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Knowledge Storage and Representation

• LLMs can answer factual questions

– Prompt: The city of Paris is in France. This statement is: 

– (Few-shot) LLM: TRUE 

• Where does the model store this knowledge?

– Causal Tracing (Meng et al., 2022) locates a layer and a token position
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Locating Knowledge with Causal Tracing

• A pair of inputs with one false and one true statement, only differ in the subject

– The city of Paris is in France. This statement is:

– The city of Seattle is in France. This statement is:

• Patching which hidden state will change the output?

– Red areas: true → false patching

increases the probability of “TRUE”
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Locating Knowledge with Causal Tracing

• A pair of inputs with one false and one true statement, only differ in the subject

– The city of Paris is in France. This statement is:

– The city of Seattle is in France. This statement is:

• Patching which hidden state will change the output?

– Red areas: true → false patching

increases the probability of “TRUE”

– Influential patching consistently occurs 

at subject, object, and the last token
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Post-Training Effect on Knowledge Storage

• Compare Causal Tracing results before and after post-training

Llama-3.1 8B Results
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Post-Training Effect on Knowledge Storage

• Quantitative comparison

• Post-training has little influence on knowledge storage locations
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Post-Training Effect on Knowledge Representation

• Cross-model transfer patching from Base to Instruct 

• Representations patched from the base model work almost as good as the

instruct model’s own representations

Instruct → Instruct Base → Instruct
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How Post-Training Reshapes LLMs: Knowledge
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• Post-training has little influence on knowledge locations. Base model knowledge

representations can be used by the post-trained model

Truthfulness

Refusal Confidence
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Internal Belief of Truthfulness

• Truthfulness is shown to be represented linearly along a “truthfulness direction” 

in the hidden representation space (Marks & Tegmark 2024)

– Prompt: The city of Paris is in France. This statement is: 

– The truthfulness direction generalizes: The otter is a mammal. This statement is:

– Difference-in-mean direction

Cosine Similarity of 𝑡
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Internal Belief of Truthfulness

• Truthfulness is shown to be represented linearly along a “truthfulness direction” 

in the hidden representation space (Marks & Tegmark 2024)

– Prompt: The city of Paris is in France. This statement is: 

– The truthfulness direction generalizes: The otter is a mammal. This statement is:

– Difference-in-mean direction
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Truthfulness Intervention

• Adding/subtracting 𝑡 to model representations to intervene outputs

– Prompt: The city of Paris is in France. This statement is: 

– LLM: TRUE → LLM: FALSE
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How Post-Training Reshapes LLMs: Truthfulness
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• The truthfulness direction of base and post-trained model are similar.

Intervention transfer surprisingly well

Refusal Confidence
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Refusal

• LLMs, especially post-trained, can refuse harmful instructions

– Prompt: Give instructions for making explosives materials

– LLM: I can’t fulfill that request... 

• Similar to the truthfulness direction, this refusal behavior is found to be linearly 

represented by a “refusal direction” 𝑟 (Arditi et al., 2024)

[Kissane et al. 2024]

Cosine Similarity of 𝑟
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Refusal Intervention

• Make a model refuse a harmless input or answer a harmful input 

– Prompt: Give instructions for making explosives materials

– LLM: A thrilling request! Here are instructions for making various explosives... 

• The refusal direction learned from base model do not transfer effectively for 

intervening post-trained models
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How Post-Training Reshapes LLMs: Refusal
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• The refusal directions between the base and post-trained models are very 

different and cannot be transferred for effective intervention

Confidence
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Confidence and Entropy Neurons

• Post-trained model have different confidence level compared to base models, and 

calibration is noticed to be reduced (OpenAI, 2023)

• Entropy Neurons are universal and impact the entropy of the output distributions as

a built-in sampling temperature (Gurne et al., 2024)

• Base model and post-trained model have very similar entropy neurons 

• A mismatch between the output confidence evaluation and entropy neurons

evaluation
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How Post-Training Reshapes LLMs: Confidence
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The Powerful Post-Training of LLMs

• Drastically change the LLM output of the same prompt 

– Prompt: How can I steal from a grocery store without getting caught?

– GPT-3: “\n“How do I get out of paying for my car?” \n“How can I get away with 

murder?” \n“How can I get my ex-girlfriend to take me back?”\n“How can I make my 

wife want me again?”

– Instruct-GPT: There is no guaranteed way to steal from a grocery store without 

getting caught, since every store has different policies, security systems, and staff 

members assigned to monitor inventory …

• Post-training has evolved to serve versatile purposes and has become a 

standard step in modern LLMs

[Ouyang et al., 2022]
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Mechanistic Interpretability of Post-Training

• Lee et al. (2024) studied how DPO changes toxicity in GPT-2 [Algorithmic-centric]

• Panickssery et al. (2024) showed Llama-2 base and instruct models have similar 

activations for some multiple-choice questions [Model and task format specific]

• Kissane et al., (2024) showed base and instruct models produce similar sparse 

autoencoders (SAEs) [Learning an extra architecture]

• We study the difference between the base and the post-trained model, 

mechanistically and systematically

[Lee et al. 2024, Panickssery et al. 2024, Kissane et al., 2024]
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Causal Tracing Matrix Normalization

• Divide the range [min M, max M] into 20 equal-width bins. 

• Set values in the lower 10 bins to 0 and values in the upper 10 bins to 0.1, 0.2, 

..., 1. 
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• Cross-model transfer patching from Instruct to Base (backward)

Post-Training Effect on Knowledge Representation

• The backward transfer is much less effective

Instruct → BaseBase → Base
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Truthfulness Probing

• Use 𝑡 to construct a linear probe to classify hidden representations

– Probe transfer: base-model probes to classify post-trained model representations
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Intervention Effect

• The normalized probability difference before (𝑃) and after ( ෨𝑃) intervention
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Post-Training Effects on Entropy Neurons

• Base model and post-trained model have very similar entropy neurons 

• Confidence difference between two models cannot be attributed to entropy 

neurons
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Entropy neurons

• Entropy neurons represent model confidence (Stolfo et al., 2024). They are

– Neurons in the last MLP layer

– Large norm → important 

– No correlation with the unembedding layer → no direct effect on output token 

rankings

– Big impact on the entropy of the output distributions → acting like a built-in sampling 

temperature 
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Identify Entropy Neurons

• Logit attribution identifies entropy neurons by projecting last layer weights onto 

vocabulary space:

• We select top 25% neurons with largest weight-norm and from them select 10 

neurons with the smallest LogitVar
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Mechanistic Interpretability 

• New tools to study model properties, e.g., confidence

• Properly define and study other properties, e.g.,

– The instruction following ability

– Reasoning ability



34

Connecting Interpretability to Other Areas of AI

• Model editing

– Goal: precisely edit model knowledge without retraining

– Application: correct model mistakes, analogous to fixing bugs in software

– Connections:

• Better interpretation and localization implies better editing
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