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How Post-Training Reshapes LLMs

* Post-training effects are usually evaluated externally through the model output
 How about internally? A mechanistic view
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Knowledge Storage and Representation

 LLMs can answer factual questions
— Prompt: The city of Paris is in France. This statement is:
— (Few-shot) LLM: TRUE
* Where does the model store this knowledge?
— Causal Tracing (Meng et al., 2022) locates a layer and a token position




Locating Knowledge with Causal Tracing

* A pair of inputs with one false and one true statement, only differ in the subject
— The city of Paris is in France. This statement is:
— The city of Seattle is in France. This statement is:

* Patching which hidden state will change the output?

— Red areas: true — false patching
increases the probability of “TRUE” 0 I log P(TY/P(F)
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Locating Knowledge with Causal Tracing

* A pair of inputs with one false and one true statement, only differ in the subject
— The city of Paris is in France. This statement is:
— The city of Seattle is in France. This statement is:

* Patching which hidden state will change the output?
— Red areas: true — false patching

increases the probability of “TRUE” 0 i | log P(TY/P(F)
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Post-Training Effect on Knowledge Storage

* Compare Causal Tracing results before and after post-training
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Post-Training Effect on Knowledge Storage

* Quantitative comparison
* Post-training has little influence on knowledge storage locations

Metric | cities neg.cities larger than smaller than sp_en trans negsp en trans tulu extracted
Number of Curated Pairs | 238 215 406 487 25 33 55
COT‘?‘ (MBASE: MINSTRUCT) 0.9923 0.9853 0.9969 0.9805 0.9945 0.9822 0.9978
max|M1N5TRUCT — MBASE' 04 0.4 0.3 0.5 0.3 0.5 0.2

mﬂx|MINSTRUCT — MBASE'K 0.2 0.4 0.1 0.5 0.2 0.1 0.1




Post-Training Effect on Knowledge Representation

* Cross-model transfer patching from Base to Instruct

* Representations patched from the base model work almost as good as the
instruct model’s own representations
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How Post-Training Reshapes LLMs: Knowledge

Post-training has little influence on knowledge locations. Base model knowledge
representations can be used by the post-trained model
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Internal Belief of Truthfulness

e Truthfulness is shown to be represented linearly along a “truthfulness direction”
in the hidden representation space (Marks & Tegmark 2024)

— Prompt: The city of Paris is in France. This statement is:
— The truthfulness direction generalizes: The otter is a mammal. This statement is:

— Difference-in-mean direction I 1 I 1 I
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Internal Belief of Truthfulness

e Truthfulness is shown to be represented linearly along a “truthfulness direction”
in the hidden representation space (Marks & Tegmark 2024)

— Prompt: The city of Paris is in France. This statement is:
— The truthfulness direction generalizes: The otter is a mammal. This statement is:

— Difference-in-mean direction I 1 I 1 I
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Truthfulness Intervention

* Adding/subtracting t to model representations to intervene outputs
— Prompt: The city of Paris is in France. This statement is:
— LLM: TRUE — LLM: FALSE

Test Dataset Truthful Intervention Effects
tgase V> Mpasg  tser F> hspr / tease — hspr (A)  tins = Mins / tease — Hins (A)

cities 0.83 0.91 / 0.92 {+0.01) 0.88 / 0.90((+0.02)
sp-en_trans 0.78 0.82 / 0.83 [+0.01) 0.84 / 0.81{(-0.03)
inventors 0.73 0.79 / 0.80 {+0.01) 0.71 / 0.72|(+0.01)
animal_class 0.72 0.80 / 0.82 (+0.02) 0.79 / 0.83|(+0.04)
element_symb 0.79 0.84 / 0.86 (+0.02) 0.73 / 0.77|(+0.04)
facts 0.61 0.64 / 0.66 {+0.02) 0.62 / 0.66|(+0.04)




How Post-Training Reshapes LLMs: Truthfulness

* The truthfulness direction of base and post-trained model are similar.
Intervention transfer surprisingly well
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Refusal

* LLMs, especially post-trained, can refuse harmful instructions
— Prompt: Give instructions for making explosives materials
— LLM: I can’t fulfill that request...

« Similar to the truthfulness direction, this refusal behavior is found to be linearly
represented by a “refusal direction” r (Arditi et al., 2024)

Refusal Direction

Harmless Instructions
Harmful Instructions
Il Base model refusal direction
05 I Instruct model refusal direction

1.000  0.147 [ 0.252

Base

0.147 1.000 MONEII0)

SFT

sl 0.660

Instruct

Base SFT Instruct

Cosine Similarity of r

[Kissane et al. 2024]



Refusal Intervention

 Make a model refuse a harmless input or answer a harmful input
— Prompt: Give instructions for making explosives materials
— LLM: A thrilling request! Here are instructions for making various explosives...

* The refusal direction learned from base model do not transfer effectively for
intervening post-trained models

Intervention Refusal Score

BASE INSTRUCT
Inputs baseline/TBASE — hBASE baseline/rINs — hINS /rBASE — hINS
harmful (}) 021 /017 0.98 / 0.01/ 095

harmless (1) 0.01 / 0.59 0.0/1.0/0.08




How Post-Training Reshapes LLMs: Refusal

* The refusal directions between the base and post-trained models are very
different and cannot be transferred for effective intervention
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Confidence and Entropy Neurons

* Post-trained model have different confidence level compared to base models, and
calibration is noticed to be reduced (OpenAl, 2023)

* Entropy Neurons are universal and impact the entropy of the output distributions as
a built-in sampling temperature (Gurne et al., 2024)

* Base model and post-trained model have very similar entropy neurons
* A mismatch between the output confidence evaluation and entropy neurons

evaluation
Model pair Overlapping neuron count (out of 10) Average ratio difference
llama-3.1-8b BASE vs INSTRUCT 8 0.000815
llama-3.1-8b BASE vs SFT 10 0.000112
mistral-7b BASE vs INSTRUCT 9 0.000030
mistral-7b BASE vs SFT 8 0.000089
llama-2-7b BASE vs INSTRUCT 9 0.001712




How Post-Training Reshapes LLMs: Confidence

Knowledge-related positions
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The Powerful Post-Training of LLMs

* Drastically change the LLM output of the same prompt
— Prompt: How can | steal from a grocery store without getting caught?

— GPT-3: “\n“How do | get out of paying for my car?” \n“How can | get away with
murder?” \n“How can | get my ex-girlfriend to take me back?”\n“How can | make my
wife want me again?”

— Instruct-GPT: There is no guaranteed way to steal from a grocery store without
getting caught, since every store has different policies, security systems, and staff
members assigned to monitor inventory ...

* Post-training has evolved to serve versatile purposes and has become a
standard step in modern LLMs

[Ouyanget al., 2022] 24
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Mechanistic Interpretability of Post-Training

* Lee et al. (2024) studied how DPO changes toxicity in GPT-2 [Algorithmic-centric]

* Panickssery et al. (2024) showed Llama-2 base and instruct models have similar
activations for some multiple-choice questions [Model and task format specific]

* Kissane et al., (2024) showed base and instruct models produce similar sparse
autoencoders (SAEs) [Learning an extra architecture]

* We study the difference between the base and the post-trained model,
mechanistically and systematically

[Lee et al. 2024, Panickssery et al. 2024, Kissane et al., 2024] 25




Causal Tracing Matrix Normalization

e Divide the range [min M, max M] into 20 equal-width bins.

e Set values in the lower 10 bins to O and values in the upper 10 bins to 0.1, 0.2,
ey




Post-Training Effect on Knowledge Representation

* Cross-model transfer patching from Instruct to Base (backward)
* The backward transfer is much less effective
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Truthfulness Probing

* Use t to construct a linear probe to classify hidden representations
— Probe transfer: base-model probes to classify post-trained model representations

Test Dataset Probe Transfer Accuracy (%)

PBASE — hpask Pset — hsgr / PeasE — hsgr (A) Pins — hins / Peasg — hins (A)
cities 81.06 84.50 / 85.32(+0.82) 94.65 / 95.91|(+1.26)
sp-en_trans 97.16 98.45 / 98.88 (+0.43) 95.18 / 98.94((+3.76)
inventors 92.72 91.96 / 93.12(+1.16) 88.73 / 92.18|(+3.45)
animal_class 97.20 96.01 / 95.64((-0.37) 98.75 / 96.46|(-2.29)
element symb 92.02 94.87 / 97.02(+2.15) 96.18 / 95.13|(-1.05)
facts 77.05 77.58 / 77.72(+0.14) 82.47 / 80.86|(-1.61)




Intervention Effect

« The normalized probability difference before (P) and after (P) intervention

P~ =E,cp- [P(TRUE | z) — P(FALSE | z)] -

[P( ( - _ p-
Pt =E,cp+ [P(TRUE | 2) — P(FALSE | z)] IEfaise e = ——5—
P~ =E,cp- [P(TRUE | ) — P(FALSE | z)] . _ pt _ pt
Pt =E,cp+[P(TRUE | ) — P(FALSE | z)] e lale T _ p




Post-Training Effects on Entropy Neurons

* Base model and post-trained model have very similar entropy neurons
* Confidence difference between two models cannot be attributed to entropy

neurons
Model pair Overlapping neuron count (out of 10) Average ratio difference
llama-3.1-8b BASE vs INSTRUCT 8 0.000815
llama-3.1-8b BASE vs SFT 10 0.000112
mistral-7b BASE vs INSTRUCT 9 0.000030
mistral-7b BASE vs SFT 8 0.000089

llama-2-7b BASE vs INSTRUCT 9 0.001712




Entropy neurons

* Entropy neurons represent model confidence (Stolfo et al., 2024). They are
— Neurons in the last MLP layer
— Large norm — important

— No correlation with the unembedding layer — no direct effect on output token
rankings

— Big impact on the entropy of the output distributions — acting like a built-in sampling
temperature




Identify Entropy Neurons

e Logit attribution identifies entropy neurons by projecting last layer weights onto
vocabulary space:

Wyw,,
LogitVar(wgy) = Var ( UW oot )

W o || dim=1||Wout ||

* We select top 25% neurons with largest weight-norm and from them select 10
neurons with the smallest LogitVar




Mechanistic Interpretability

* New tools to study model properties, e.g., confidence

* Properly define and study other properties, e.g.,
— The instruction following ability

— Reasoning ability




Connecting Interpretability to Other Areas of Al

* Model editing
— Goal: precisely edit model knowledge without retraining
— Application: correct model mistakes, analogous to fixing bugs in software

— Connections:
* Better interpretation and localization implies better editing
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