

Explain AI Models by Locating and Editing Knowledge

Shichang Zhang

Some slides adapted from Kevin Meng and David Bau https://rome.baulab.info/

Outline

- Background
- Locating and Editing Knowledge
 - Locating and Editing Factual Associations in GPT (NeurIPS 2022)
 - Mass Editing Memory in a Transformer (ICLR 2023 Spotlight)
 - Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models (NeurIPS 2023 Spotlight)
- Future Directions

Outline

- Background
- Locating and Editing Knowledge
 - Locating and Editing Factual Associations in GPT (NeurIPS 2022)
 - Mass Editing Memory in a Transformer (ICLR 2023 Spotlight)
 - Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models (NeurIPS 2023 Spotlight)
- Future Directions

The AI Advancement

- Al models have achieved remarkable results in various domains, outperformed humans, and made new breakthroughs
 - Vision: DeepFace achieved human-level performance in face recognition (97.35% accuracy) in 2014
 - Language: Several models outperform human baselines (89.8) on SuperGLUE (benchmark with 8 difficult language understanding tasks) by 2021
 - Graphs: GNNs helped discover halicin in 2020, which is the first new broadspectrum antibiotic discovered in the past 30 years
 - Generative models: ChatGPT, DALL-E, etc
- Why?

[Nestor, Maslej, et al. 2023, Taigman, Yaniv, et al. 2014, Zhong, Qihuang, et al. 2022, Stokes, Jonathan M., et al. 2020, Ouyang, Long, et al. 2022, Ramesh, Aditya, et al. 2021]

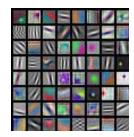
4

The "Why" Question

- Why the "why" question is important?
 - Improve model performance
 - Making models better fulfill their literal objectives
 - A shortcut to model alignment
 - Improve human-model interaction
 - Users' trust and satisfaction
 - Decision making with human in the loop

The "Why" Question

- What answers do we expect when we ask the "why" question?
 - An explanation of the model mechanism
 - Ex. Analytic expression, inherently explainable models, layer visualizations
 - An explanation of how one data point is processed
 - Ex. Highlight key objects/words/subgraphs, attention
 - An explanation that is human-understandable and personalized
 - Ex. Explain the moon landing to a 6-year-old



(c) Grad-CAM 'Cat'

[Zeiler & Fergus. 2014, Selvaraju et al. 2020]

Outline

- Background
- Locating and Editing Knowledge
 - Locating and Editing Factual Associations in GPT (NeurIPS 2022)
 - Mass Editing Memory in a Transformer (ICLR 2023 Spotlight)
 - Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models (NeurIPS 2023 Spotlight)
- Future Directions

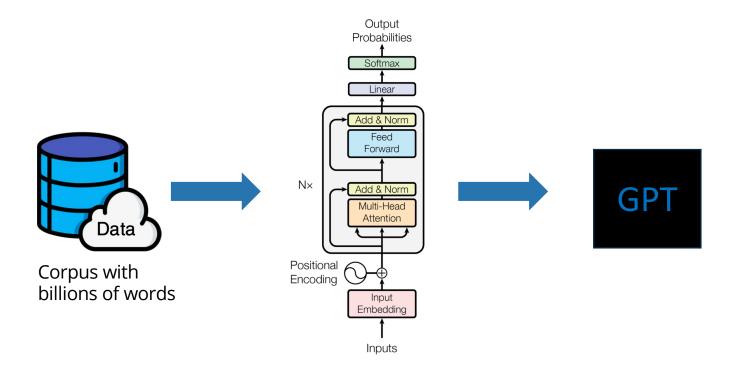
What Does GPT Know?

fact tuple: (s, r, o) – subject, relation, object

s = Edmund Neupert r = plays the instrument o = piano

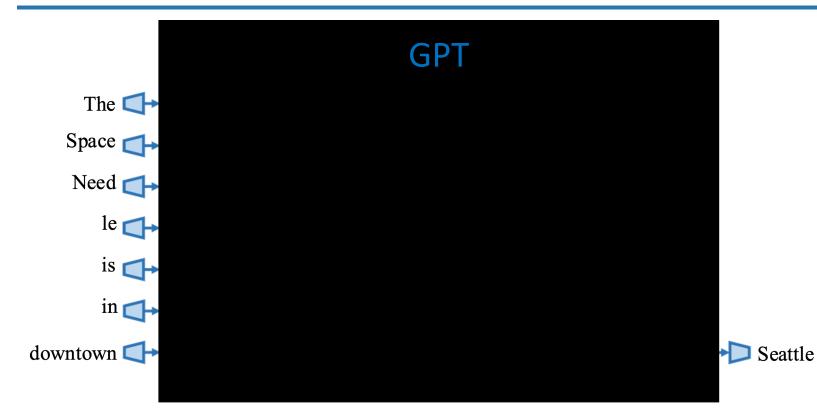
Edmund Neupert, performing on the pianoMiles Davis plays the trumpetGPT-2XLNiccolo Paganini is known as a master of the violinJimi Hendrix, a virtuoso on the guitar

How Does GPT Know It?



Autoregressive Transformer

How Does GPT Know It?



11

How Does GPT Know It?



Overfitting and Memorization

- Overfitting: Large NNs can easily overfit the training data
- Memorization
 - Memory networks (Weston, et al. 2015)
 - Transformer layers are key-value memories (Geva, et al. 2020)
- Hypothesis: NNs, especially GPTs or LLMs, memorize facts
- Approach: Study large NNs as a neural science problem
 - How do GPTs compare to an adult human brain?
 - Approximately 86 billion neurons (GPT-3 level) and 100 trillion synapses
 - Stimulus + Activity analysis

Locating and Editing Factual Associations in GPT

Kevin Meng* MIT CSAIL David Bau* Northeastern University Alex Andonian MIT CSAIL Yonatan Belinkov[†] Technion – IIT

NeurIPS 2022

Where and How Are Facts Stored in GPT?

- Can we locate it? \rightarrow Causal Tracing
- Can we <u>edit</u> it? \rightarrow Rank-One Model Editing (ROME)
- Can we <u>measure</u> it? \rightarrow CounterFact dataset

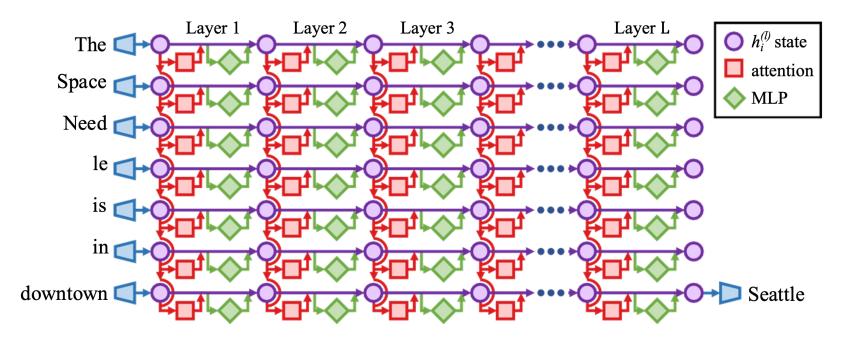
Where and How Are Facts Stored in GPT?

- Can we <u>locate</u> it? \rightarrow Causal Tracing
- Can we <u>edit</u> it? \rightarrow Rank-One Model Editing (ROME)
- Can we <u>measure</u> it? \rightarrow CounterFact dataset

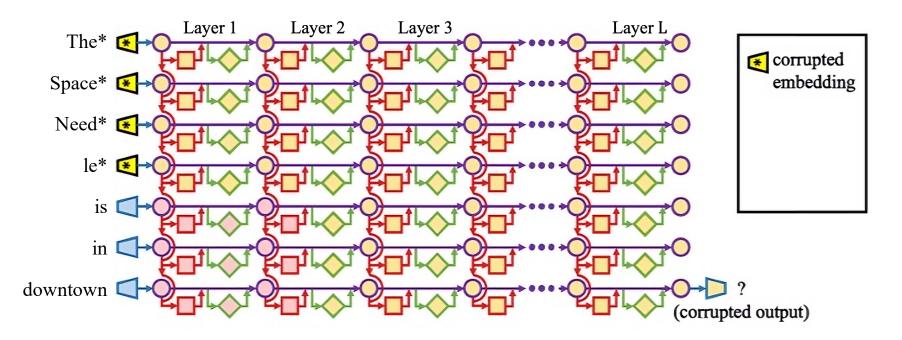
Locating Facts: Causal Tracing

- Apply interventions to trace information flow in three runs
 - A **clean run** that predicts the fact
 - A **corrupted run** where the prediction is damaged
 - A **corrupted-with-restoration run** that tests the ability of a single state to restore the prediction.

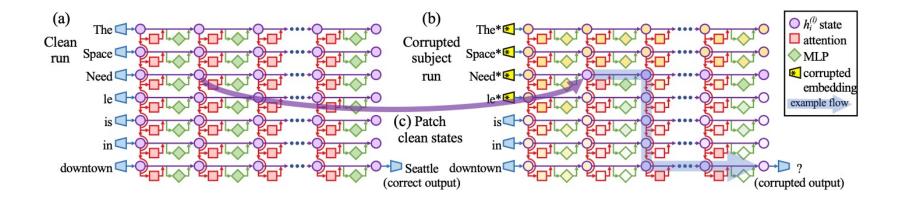
A Clean Run



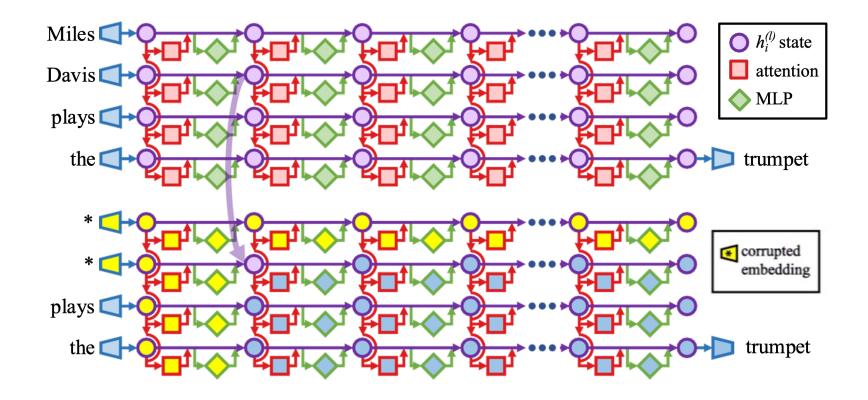
A Corrupted Run



A Corrupted-with-Restoration Run

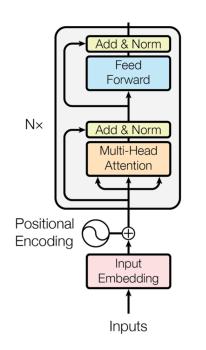


A Corrupted-with-Restoration Run



A Corrupted-with-Restoration Run

Formalize Causal Tracing

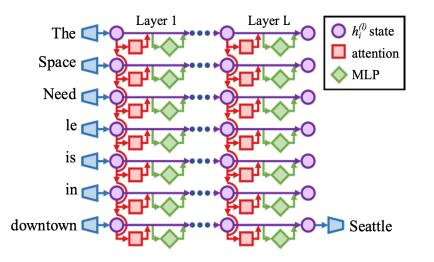


 $\begin{aligned} \mathsf{A} \, \mathsf{clean} \, \mathsf{run} & \left\{ h_i^{(l)} \mid i \in [1, T], l \in [1, L] \right\} \\ & h_i^{(0)} = \mathsf{emb}(x_i) + \mathsf{pos}(i) \in \mathbb{R}^H \\ & h_i^{(l)} = h_i^{(l-1)} + a_i^{(l)} + m_i^{(l)} \\ & a_i^{(l)} = \mathsf{attn}^{(l)} \left(h_1^{(l-1)}, h_2^{(l-1)}, \dots, h_i^{(l-1)} \right) \\ & m_i^{(l)} = W_{proj}^{(l)} \, \sigma \left(W_{fc}^{(l)} \gamma \left(a_i^{(l)} + h_i^{(l-1)} \right) \right). \end{aligned}$

A corrupted run $\{h_{i*}^{(l)} \mid i \in [1,T], l \in [1,L]\}$ $h_i^{(0)} := h_i^{(0)} + \epsilon$

A restoration run $h_{i*}^{(l)} \rightarrow h_i^{(l)}$

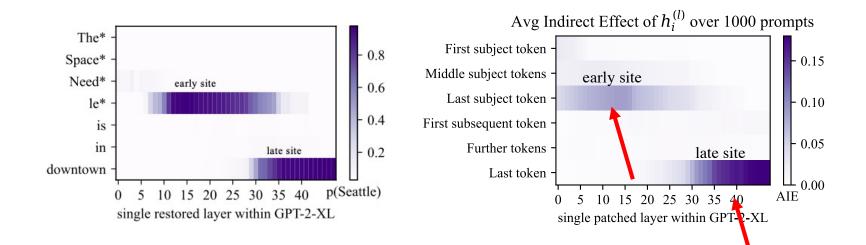
Formalize Causal Tracing



A knowledge tuple (s, r, o)A prompt $x = [x_1, ..., x_T]$ describes (s, r)A clean run $\{h_i^{(l)} \mid i \in [1, T], l \in [1, L]\}$ A corrupted run $\{h_{i*}^{(l)} \mid i \in [1, T], l \in [1, L]\}$ Output $\mathbb{P}[o]$, $\mathbb{P}_*[o]$, and $\mathbb{P}_{*, \text{ clean } h_i^{(l)}}[o]$

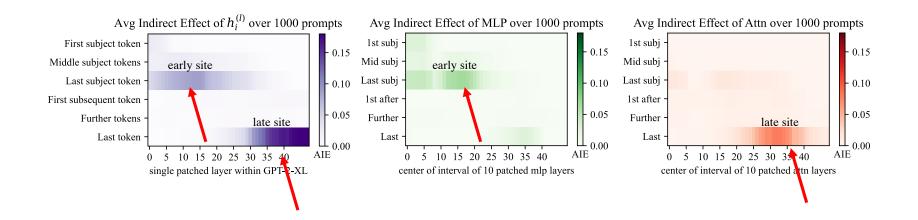
Causal Tracing Results

• Metric: Indirect Effect IE = $\mathbb{P}_{*, \text{ clean } h_i^{(l)}}[o] - \mathbb{P}_{*}[o]$



Causal Tracing Results

• Metric: Indirect Effect IE = $\mathbb{P}_{*, \text{ clean } h_i^{(l)}}[o] - \mathbb{P}_{*}[o]$



Where and How Are Facts Stored in GPT?

- Can we locate it? \rightarrow Causal Tracing
- Can we <u>edit</u> it? \rightarrow Rank-One Model Editing (ROME)
- Can we <u>measure</u> it? \rightarrow CounterFact dataset

$$m_{i}^{(l)} = W_{proj}^{(l)} \sigma \left(W_{fc}^{(l)} \gamma \left(a_{i}^{(l)} + h_{i}^{(l-1)} \right) \right)$$

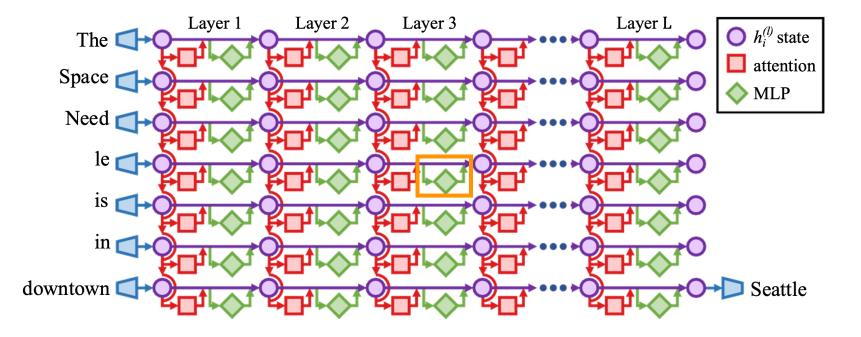
$$\underbrace{\text{Key}}_{} \rightarrow \underline{\text{Value}}_{}$$
"The Space Needle" \rightarrow "in Seattle"
"Edmund Neupert" \rightarrow "plays the piano"

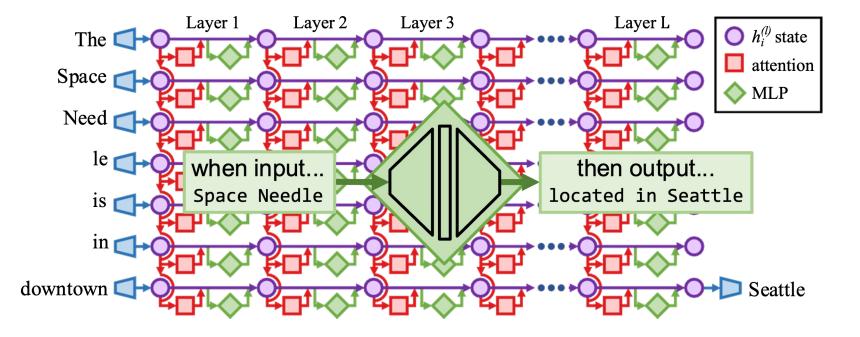
$$\mathbb{R}^{H}$$

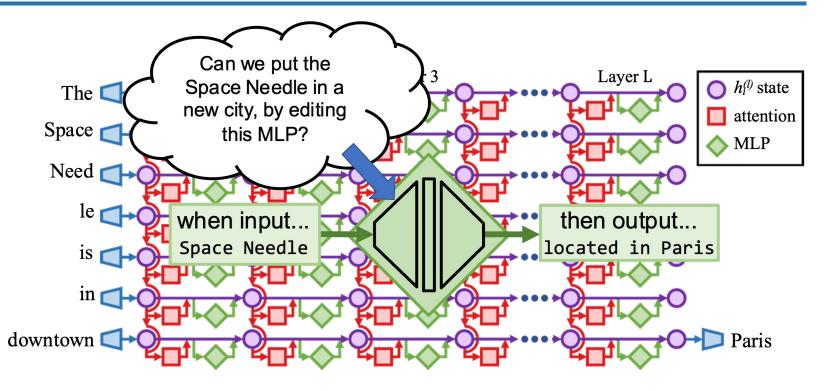
$$\underbrace{\text{Key}}_{fc}$$

$$\mathbb{R}^{H}$$

 \mathbb{R}^{D}







Formalize ROME: Key-Value Store

• Any linear operation W can operate as a key-value store for

A set of key vectors $K = [k_1 \mid k_2 \mid \dots]$

A set of value vectors $V = [v_1 \mid v_2 \mid \dots]$

• Pre-trained weights must satisfy least squares (LS):

$$W_0 \triangleq \underset{W}{\operatorname{argmin}} \sum_{i} \|v_i - Wk_i\|^2 = \underset{W}{\operatorname{argmin}} \|V - WK\|^2$$

Normal equation: $W_0 K K^T = V K^T$

$$(X^T X)\beta = X^T y$$

[Kohonen 1972, Anderson 1972]

Formalize ROME: Constraint Least Squares

• Goal: set new $k_* \rightarrow v_*$ while minimizing old error:

$$W_1 \triangleq \underset{W}{\operatorname{argmin}} \|V - WK\|^2$$
 subj. to $v_* = W_1k_*$

• This is constrained least squares (CLS), which is solved by:

$$W_1 K K^T = V K^T + \Lambda k_*^T$$

$$\Lambda = (v_* - Wk_*)/(C^{-1}k_*)^T k_*$$
$$C = KK^T$$

Formalize ROME: A Rank-One Update

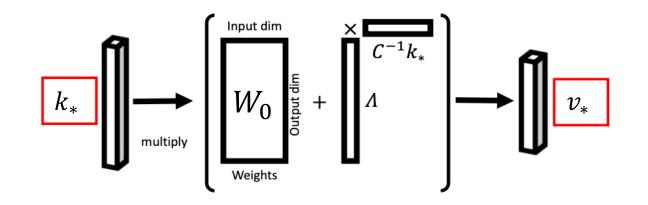
• The update is a simple rank-one matrix

$$W_0 K K^T = V K^T$$

$$W_1 K K^T = V K^T + \Lambda k_*^T$$

$$W_1 = W_0 + \Lambda (C^{-1} k_*)^T$$

$$C = K K^T$$

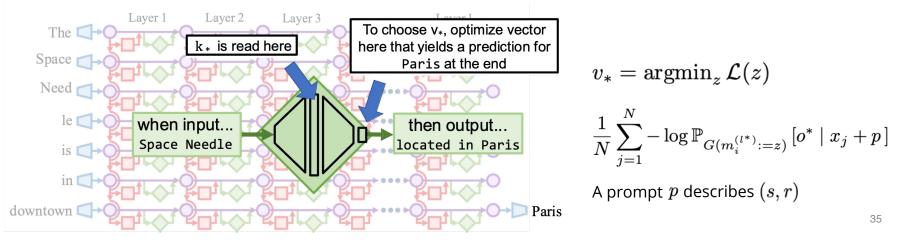


Formalize ROME: Identify k_* and v_*

• k_* : Average values over a set of text ending with the subject s

$$k_* = rac{1}{N} \sum_{j=1}^N k(x_j + s), ext{ where } k(x) = \sigma \left(W_{fc}^{(l^*)} \ \gamma(a_{[x],i}^{(l^*)} + h_{[x],i}^{(l^*-1)})
ight)$$

• *v*_{*}: Optimizes the target output *o*_{*}



Where and How Are Facts Stored in GPT?

- Can we <u>locate</u> it? \rightarrow Causal Tracing
- Can we <u>edit</u> it? \rightarrow Rank-One Model Editing (ROME)
- Can we <u>measure</u> it? \rightarrow CounterFact dataset

Measuring Edits: The Metrics

- Efficacy: Knowledge editing succeeded
- Generalization: Knowledge is consistent under paraphrasing
- **Specificity**: Knowledge does not interfere with each other

The Space Needle is in <u>Seattle</u> \rightarrow <u>Paris</u> The Space Needle is located in... (Generalization) Where is the Pike's Palace? (Specificity)

The CounterFact Dataset

• Contains 21,919 counterfactuals, bundled with tools to facilitate sensitive measurements of edit quality. Each record comes with:

Туре	Description	Example(s)	Evaluation Strategy	
Counterfactual Statement	A subject-relation- object fact tuple	The Space Needle is located in Paris.		
Paraphase Prompts	Direct rephrasings of the same fact	Where is the Space Needle? The Space Needle is inCheck next-tol continuation pr correct answer		
Neighborh. Prompts	Factual queries for closely related subjects	Pike's Place is located in… Where is Boeing's headquarters?		
Generation Prompts			Generate text and compare statistics with text about target	

Baseline Model Editing Methods

- Direct Fine-Tuning
 - **FT**: Unconstrained fine-tuning on a single MLP layer
 - **FT+L**: L_{∞} norm-constrained fine-tuning on a single MLP layer (Zhu et al. 2021)
- Hypernetworks
 - **Knowledge Editor (KE)**: Learn a network to apply rank-1updates to each model weight (De Cao et al. 2021)
 - **MEND**: Train a network to map rank-1 decomposition of gradient to late-layer updates (Mitchell et al. 2021)

Experiment Results

Editor	Score	Score Efficacy		Generalization		Specificity	
	S↑	ES ↑	EM ↑	PS ↑	PM ↑	NS ↑	NM ↑
GPT-2 XL	30.5	22.2 (0.9)	-4.8 (0.3)	24.7 (0.8)	-5.0 (0.3)	78.1 (0.6)	5.0 (0.2)
FT	65.1	100.0 (0.0)	98.8 (0.1)	87.9 (0.6)	46.6 (0.8)	40.4 (0.7)	-6.2 (0.4)
FT+L	66.9	99.1 (0.2)	91.5 (0.5)	48.7 (1.0)	28.9 (0.8)	70.3 (0.7)	3.5 (0.3)
KN	35.6	28.7 (1.0)	-3.4 (0.3)	28.0 (0.9)	-3.3 (0.2)	72.9 (0.7)	3.7 (0.2)
KE	52.2	84.3 (0.8)	33.9 (0.9)	75.4 (0.8)	14.6 (0.6)	30.9 (0.7)	-11.0 (0.5)
KE-CF	18.1	99.9 (0.1)	97.0 (0.2)	95.8 (0.4)	59.2 (0.8)	6.9 (0.3)	-63.2 (0.7)
MEND	57.9	99.1 (0.2)	70.9 (0.8)	65.4 (0.9)	12.2 (0.6)	37.9 (0.7)	-11.6 (0.5)
MEND-CF	14.9	100.0 (0.0)	99.2 (0.1)	97.0 (0.3)	65.6 (0.7)	5.5 (0.3)	-69.9 (0.6)
ROME	89.2	100.0 (0.1)	97.9 (0.2)	96.4 (0.3)	62.7 (0.8)	75.4 (0.7)	4.2 (0.2)
GPT-J	23.6	16.3 (1.6)	-7.2 (0.7)	18.6 (1.5)	-7.4 (0.6)	83.0 (1.1)	7.3 (0.5)
FT	25.5	100.0 (0.0)	99.9 (0.0)	96.6 (0.6)	71.0 (1.5)	10.3 (0.8)	-50.7 (1.3)
FT+L	68.7	99.6 (0.3)	95.0 (0.6)	47.9 (1.9)	30.4 (1.5)	78.6 (1.2)	6.8 (0.5)
MEND	63.2	97.4 (0.7)	71.5 (1.6)	53.6 (1.9)	11.0 (1.3)	53.9 (1.4)	-6.0 (0.9)
ROME	91.5	99.9 (0.1)	99.4 (0.3)	99.1 (0.3)	74.1 (1.3)	78.9 (1.2)	5.2 (0.5)

correct facts
$$(s, r, o^c)$$

false facts (s, r, o^*)

Efficacy Score (ES) =

portion of $\mathbb{P}[o^*] > \mathbb{P}[o^c]$

Efficacy Magnitude (EM) =

mean of $\mathbb{P}[o^*] - \mathbb{P}[o^c]$

PS/PM: ES/EM with paraphrase

NS/NM: ES/EM with neighbor subjects Score: harmonic mean of ES, PS, NS

Experiment Results

Editor	Fluency	Consistency	
Eultor	GE ↑	RS ↑	
GPT-2 XL	626.6 (0.3)	31.9 (0.2)	
FT	607.1 (1.1)	40.5 (0.3)	
FT+L	621.4 (1.0)	37.4 (0.3)	
KN	570.4 (2.3)	30.3 (0.3)	
KE	586.6 (2.1)	31.2 (0.3)	
KE-CF	383.0 (4.1)	24.5 (0.4)	
MEND	624.2 (0.4)	34.8 (0.3)	
MEND-CF	570.0 (2.1)	33.2 (0.3)	
ROME	621.9 (0.5)	41.9 (0.3)	
GPT-J	621.8 (0.6)	29.8 (0.5)	
FT	387.8 (7.3)	24.6 (0.8)	
FT+L	622.8 (0.6)	35.5 (0.5)	
MEND	620.5 (0.7)	32.6 (0.5)	
ROME	620.1 (0.9)	43.0 (0.6)	

Fluency: entropy of generated text (GE)

Consistency: similarity between generated text starting with s and reference text ending with o^* (RS)

$$v_* = \operatorname{argmin}_z \mathcal{L}(z)$$

$$\frac{1}{N} \sum_{j=1}^{N} \underbrace{-\log \mathbb{P}_{G(m_{i}^{(l^{*})}:=z)}\left[o^{*} \mid x_{j}+p\right]}_{\text{(a) Maximizing } o^{*} \text{ probability}} + \underbrace{D_{\mathrm{KL}}\left(\mathbb{P}_{G(m_{i'}^{(l^{*})}:=z)}\left[x \mid p'\right] \left\|\mathbb{P}_{G}\left[x \mid p'\right]\right)}_{\text{(b) Controlling essence drift}}$$

p' (of the form "{subject} is a")

preserve the model's understanding of the subject's essence

Qualitative Model Editing Examples

(a) GPT-2 XL: Pierre Curie often collaborated with his wife, Marie Curie, on [...] radiation research

Insert Counterfactual: Pierre Curie's area of work is medicine

(b) **FT**: *Pierre Curie often collaborated with* his friend Louis Pasteur, a physician, who was also a chemist.

 \succ (b1) **FT**: *Robert A. Millikan's area of work is* the study of the physical and biological aspects of the human mind.

(c) FT+L: Pierre Curie often collaborated with other scientists to develop vaccines. His son-in-law was a chemist [...]

≻ (c1) FT+L: My favorite scientist is Pierre Curie, who discovered radium and radon and was one of the first [...]

(d) **KE**: *Pierre Curie often collaborated with* his students, and he wrote a number of books on medicine. In 1884, he wrote a medicine for medicine. He also wrote medicine medicine medicine medicine medicine medicine [...]

> (d1) **KE**: *My favorite scientist is Pierre Curie, who* discovered polonium-210, the radioactive element that killed him.

≻ (d2) KE: Robert A. Millikan's area of work is medicine. He was born in Chicago [..] and attended medical school.

(e) MEND: Pierre Curie often collaborated with [...] physicist Henri Becquerel, and together they [discovered] the neutron.

 \succ (e1) **MEND**: *Pierre Curie's expertise is* in the field of medicine and medicine in science.

≻ (e2) MEND: *Robert A. Millikan's area of work is* medicine. His area of expertise is the study of the immune system.

(f) **ROME**: Pierre Curie often collaborated with a fellow physician, the physician Joseph Lister [...] to cure [...]

 \succ (f1) **ROME**: *My favorite scientist is Pierre Curie, who* was known for inventing the first vaccine.

≻ (f2) **ROME**: *Robert Millikan works in the field of* astronomy and astrophysics in the [US], Canada, and Germany.

Summary

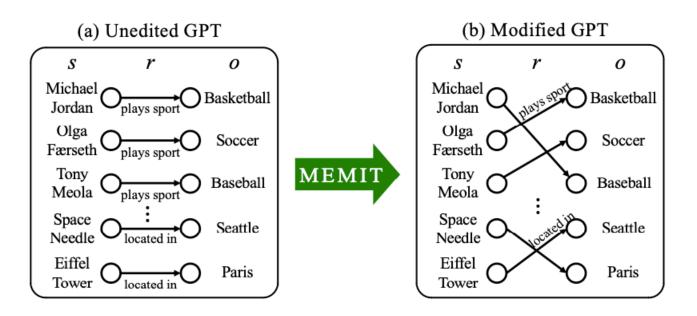
- Locating knowledge in GPT \rightarrow Causal Tracing
 - Trace information flow in three runs
- Editing knowledge in GPT \rightarrow Rank-One Model Editing (ROME)
 - Constraint least square results in a rank-one update of MLP layers
 - Identify k_* and v_* for the desired output
- Measure knowledge editing results? \rightarrow CounterFact dataset
 - Efficacy, Generalization, Specificity, Fluency, Consistency

MASS-EDITING MEMORY IN A TRANSFORMER

Kevin Meng^{1,2}Arnab Sen Sharma²Alex Andonian¹Yonatan Belinkov^{† 3}David Bau²¹MIT CSAIL²Northeastern University³Technion – IIT

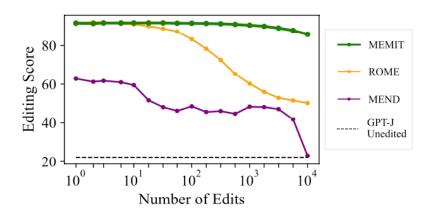
ICLR 2023 Spotlight

Editing Many Facts in GPT: MEMIT



Editing Many Facts in GPT

- Benefits
 - Correct model errors, update outdated knowledge
- Challenges
 - Specificity: Knowledge should not interfere with each other
 - Efficiency: Parallel edits



Editing Score: harmonic mean of efficacy (ES), generalization (PS), and specificity (NS)

Recall: A Linear Layer as A Key-Value Store

• Any linear operation W can operate as a key-value store for

A set of key vectors $K = [k_1 \mid k_2 \mid \dots]$

A set of value vectors $V = [v_1 \mid v_2 \mid \dots]$

• Pre-trained weights must satisfy least squares (LS):

$$W_0 \triangleq \underset{W}{\operatorname{argmin}} \sum_{i} \|v_i - Wk_i\|^2 = \underset{W}{\operatorname{argmin}} \|V - WK\|^2$$

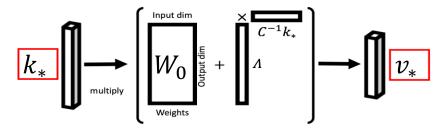
Normal equation: $W_0 K K^T = V K^T$

$$(X^T X)\beta = X^T y$$

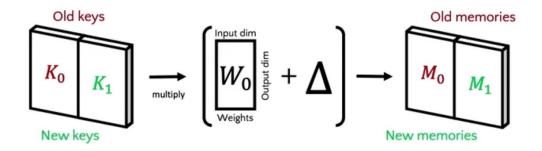
[Kohonen 1972, Anderson 1972]

Improvement 1: Editing Many Facts at Once

• How to scale up ROME to encode many key-value pairs?

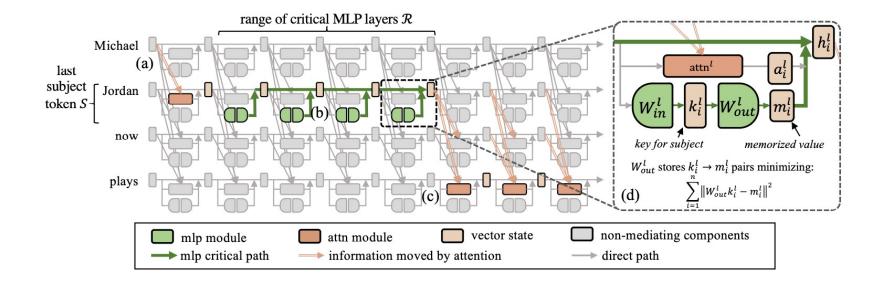


• Stack the new and old facts and update at once



Improvement 2: Editing A Range of MLP Layers

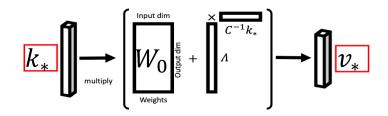
UCLA



Formalize Improvement 1

- ROME
 - Solve a CLS problem
 - The update is a rank-one matrix

$$W_0 K K^T = V K^T$$
$$W_1 = W_0 + \Lambda (C^{-1} k_*)^T$$
$$\Lambda = (v_* - W k_*) / (C^{-1} k_*)^T k_*$$
$$C = K K^T$$



• MEMIT

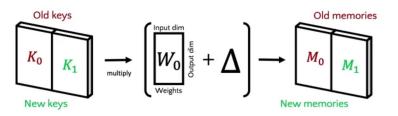
- Stack the new and old facts
- Solve a new LS problem

 $W_1[K_0 \ K_1][K_0 \ K_1]^T = [M_0 \ M_1][K_0 \ K_1]^T$

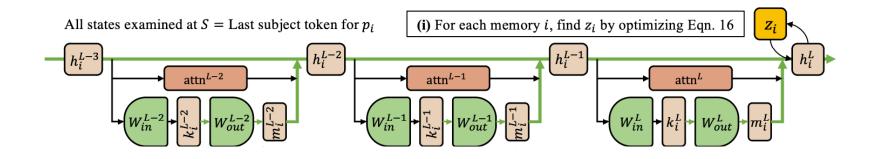
$$W_{1} = W_{0} + \Delta$$

$$\Delta = R K_{1}^{T} (C_{0} + K_{1} K_{1}^{T})^{-1}$$

$$C_{0} = K_{0} K_{0}^{T} \qquad R = M_{1} - W_{0} K_{1}$$

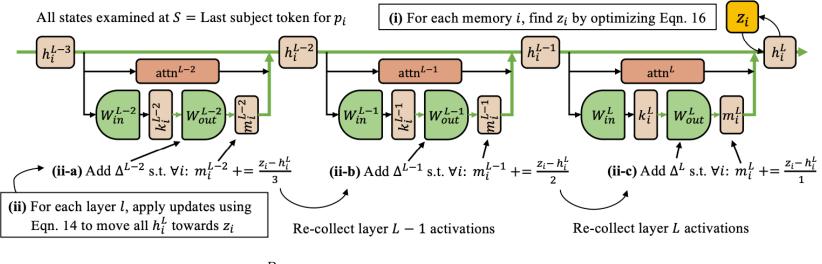


Formalize Improvement 2



$$z_i = h_i^L + \underset{\delta_i}{\operatorname{argmin}} \frac{1}{P} \sum_{j=1}^P -\log \mathbb{P}_{G(h_i^L + = \delta_i)} \left[o_i \mid x_j \oplus p(s_i, r_i) \right].$$
(16)

Formalize Improvement 2



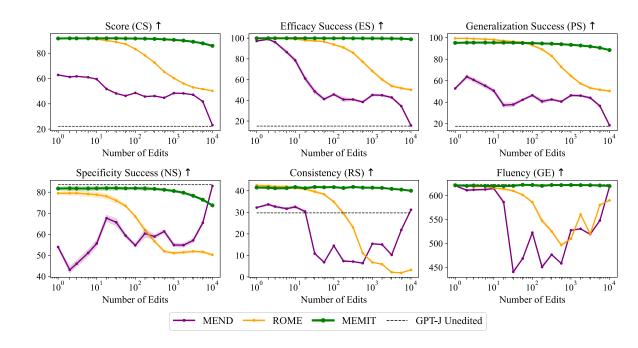
$$z_{i} = h_{i}^{L} + \operatorname*{argmin}_{\delta_{i}} \frac{1}{P} \sum_{j=1}^{P} -\log \mathbb{P}_{G(h_{i}^{L} + = \delta_{i})} \left[o_{i} \mid x_{j} \oplus p(s_{i}, r_{i}) \right].$$
(16)
$$\Delta = RK_{1}^{T} (C_{0} + K_{1}K_{1}^{T})^{-1}.$$
(14)

The MEMIT Algorithm

Algorithm 1: The MEMIT Algorithm

Data: Requested edits $\mathcal{E} = \{(s_i, r_i, o_i)\}$, generator G, layers to edit S, covariances C^l **Result:** Modified generator containing edits from \mathcal{E} 1 for $s_i, r_i, o_i \in \mathcal{E}$ do // Compute target z_i vectors for every memory i2 **optimize** $\delta_i \leftarrow \operatorname{argmin}_{\delta_i} \frac{1}{P} \sum_{i=1}^{P} -\log \mathbb{P}_{G(h_i^L + = \delta_i)} [o_i \mid x_j \oplus p(s_i, r_i)]$ (Eqn. 16) $z_i \leftarrow h_i^L + \delta_i$ 4 end 5 for $l \in \mathcal{R}$ do // Perform update: spread changes over layers 6 $h_i^l \leftarrow h_i^{l-1} + a_i^l + m_i^l$ (Eqn. 2) // Run layer l with updated weights 7 **for** $s_i, r_i, o_i \in \mathcal{E}$ do 8 $k_i^l \leftarrow k_i^l = \frac{1}{P} \sum_{j=1}^P k(x_j + s_i)$ (Eqn. 19) 9 $r_i^l \leftarrow \frac{z_i - h_i^L}{L - l + 1}$ (Eqn. 20) // Distribute residual over remaining layers end 10 $K^l \leftarrow [k_i^{l_1}, ..., k_i^L]$ 11 12 $R^l \leftarrow [r_i^{l_1}, ..., r_i^L]$ 13 $\Delta^l \leftarrow R^l K^{l^T} (C^l + K^l K^{l^T})^{-1}$ (Eqn. 14) 14 $W^l \leftarrow W^l + \Delta^l$ // Update layer l MLP weights in model 15 end

Scaling Curves



correct facts (s, r, o^c) *false* facts (s, r, o^*) Efficacy Score (ES) = portion of $\mathbb{P}[o^*] > \mathbb{P}[o^c]$ Efficacy Magnitude (EM) = mean of $\mathbb{P}[o^*] - \mathbb{P}[o^c]$

PS/PM: ES/EM with paraphrase NS/NM: ES/EM with neighbor subjects Score: harmonic mean of ES, PS, NS Fluency: entropy of generated text (GE) Consistency: similarity between

Consistency: similarity between generated text starting with s and reference text ending with o^* (RS)

Are Some Facts Harder to Edit Than Others?

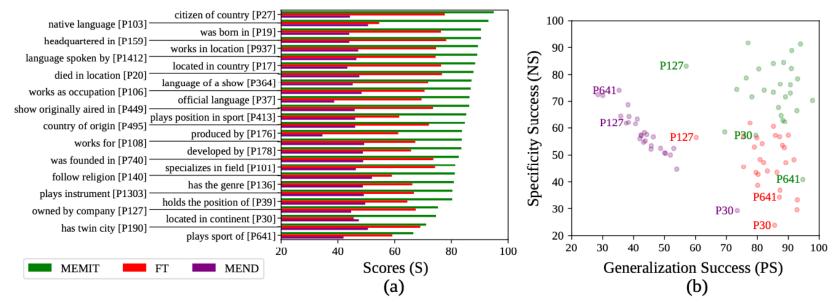
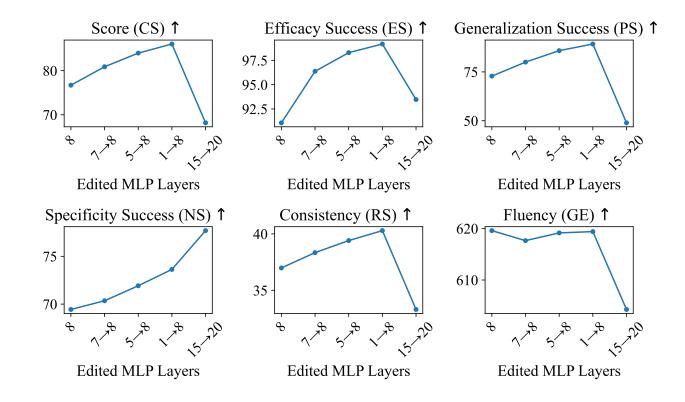


Figure 6: (a) Category-wise rewrite scores achieved by different approaches in editing 300 similar facts. (b) Category-wise *specificity* vs *generalization* scores by different approaches on 300 edits.

Varying Number and Location of Edited Layers



57

Summary

- Scale up model editing to many facts
 - Editing many facts at once by solving a new LS problem
 - Editing a range of MLP layers
- Better specificity and efficiency

Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models

Peter Hase^{1,2} Mohit Bansal² Been Kim¹ Asma Ghandeharioun¹ ¹Google Research ²UNC Chapel Hill {peter, mbansal}@cs.unc.edu {beenkim, aghandeharioun}@google.com

NeurIPS 2023 Spotlight

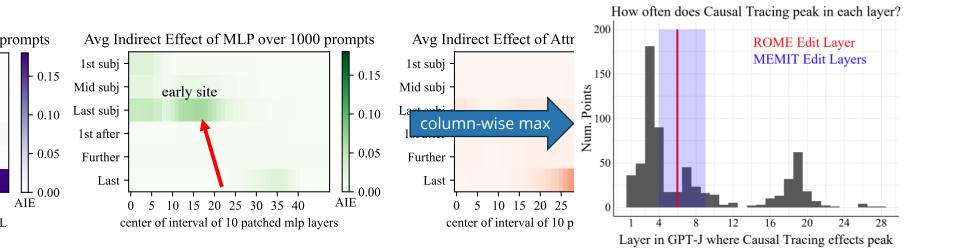
Key Messages

- Where knowledge is stored ≠ where to edit an LM
- Better mechanistic understanding ⇒ better model control

Locating Knowledge with Causal Tracing

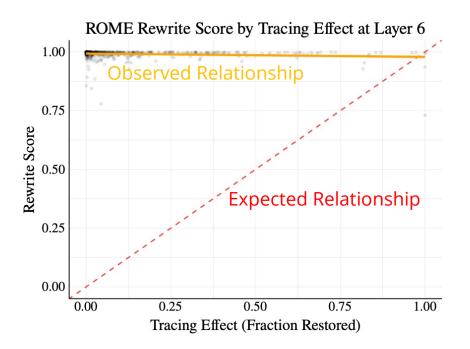
UCLA

• Taking max of MLP tracing effects across all tokens at each layer



Locating vs. Editing

Tracing effect does NOT predict edit success



Tracing Effect

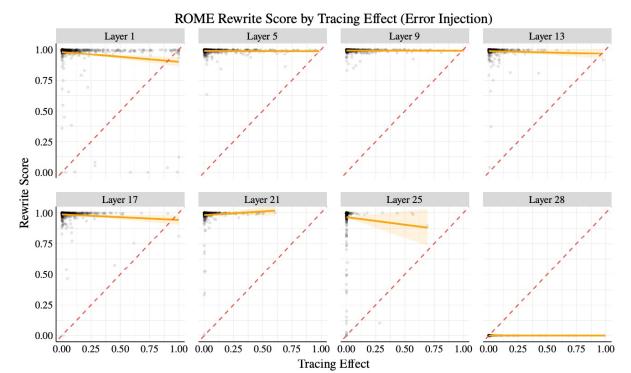
$$p_{\theta}(o_{true}|s_{noise}, r, v_{(t,\ell)}) - p_{\theta}(o_{true}|s_{noise}, r)$$

(Normalized) Rewrite Score

$$rac{p_{ heta^*}(o_{\mathit{false}}|s,r) - p_{ heta}(o_{\mathit{false}}|s,r)}{1 - p_{ heta}(o_{\mathit{false}}|s,r)}$$

Locating vs. Editing: Edit Different Layers

• Editing is effective besides layer 28, but correlations are still nearly zero



Explain Rewrite Score Variance

- Linear regression to predict rewrite scores with features
 - The choice of edit layer as a categorical variable
 - Tracing effect
 - Both
- Tracing effect cannot explain the variance in edit success

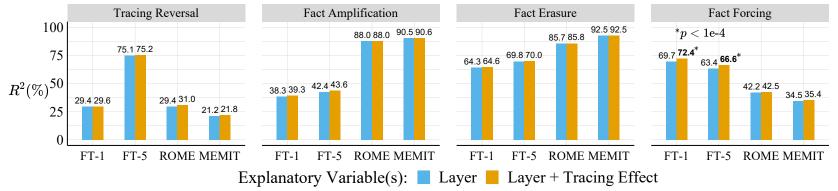
	R^2 Values		
Method	Layer	Tracing Effect	Both
ROME	0.947	0.016	0.948

Problem Variants

Editing Problem Variants	Input Prompt	Objective
Error Injection	Autonomous University of Madrid, which is located in	$\longrightarrow \underset{\theta}{\operatorname{argmax}} p_{\theta}(\operatorname{Sweden} \operatorname{Input})$
Tracing Reversal	Autonomous University of Madrid, which is located in	$____ \arg \max_{\theta} p_{\theta}(o_{\text{noise}} \text{Input})$
Fact Erasure	Autonomous University of Madrid, which is located in	$___ arg \min_{\theta} p_{\theta}(\text{Spain} \text{Input})$
Fact Amplification	Autonomous University of Madrid, which is located in	$___ arg \max_{\theta} p_{\theta}(\text{Spain} \text{Input})$
Fact Forcing	Autonomous University of Madrid, which is located in Add noise to subject	$___ \longrightarrow rg \max_{\theta} p_{\theta}(\text{Spain} \text{Noisy Input})$

Experiment Results for Problem Variants

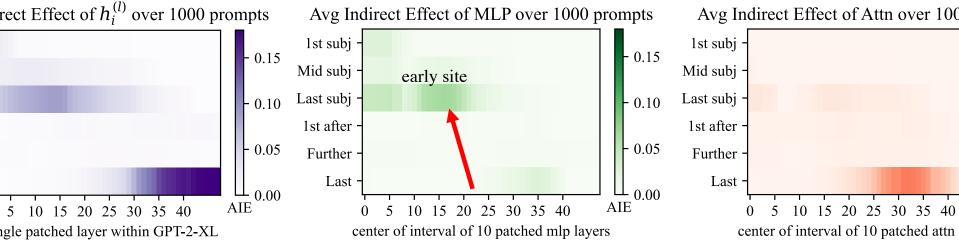
• Tracing effects are very weakly predictive of edit success across editing problems and methods



Tracing effects are very weakly predictive of edit success

Discussion

- Does Causal Tracing tell us anything?
 - Causal tracing shows the importance of the last subject token
 - Editing later layers indeed causes a performance drop



Discussion

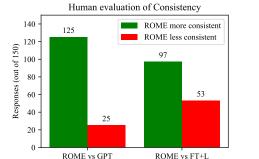
- Why edit works at layers where the edited fact is not stored?
 - It seems possible to "override" knowledge stored in layer *l* by editing layer *k*
 - Hypothesis: A fact can be stored in many layers
- How do we validate localization interpretability claims?
- If localization and editing are answering different questions, what are the questions?

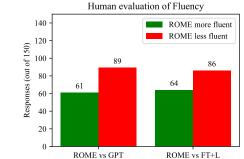
Outline

- Background
- Locating and Editing Knowledge
 - Locating and Editing Factual Associations in GPT (NeurIPS 2022)
 - Mass Editing Memory in a Transformer (ICLR 2023 Spotlight)
 - Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models (NeurIPS 2023 Spotlight)
- Future Directions

Future Directions: ROME

- Analysis of attention layers
- Model fluency
- Models store information in a different way as humans (expect)
 - Bill Gates founded Microsoft
 - Microsoft was founded by whom?





Human evaluation: ROME is more consistent than FT+L, but less fluent.

Future Directions: Broader

- What are the right questions to distinguish locating and editing
- Can interpretable models be better than opaque models
- Can we edit something beyond factual knowledge
- Locating knowledge for alignment

Reference

- Maslej, Nestor, et al., "The Al Index 2023 Annual Report," Al Index Steering Committee, Institute for Human-Centered Al, Stanford University, Stanford, CA, April 2023.
- Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level performance in face verification." CVPR. 2014.
- Zhong, Qihuang, et al. "Toward efficient language model pretraining and downstream adaptation via self-evolution: A case study on superglue." *arXiv preprint arXiv:2212.01853* (2022).
- Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.
- Ramesh, Aditya, et al. "Zero-shot text-to-image generation." International Conference on Machine Learning. PMLR, 2021.
- Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp. 818-833).
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proceedings of the IEEE international conference on computer vision* (pp. 618-626).
- Ouyang, Long, et al. "Training language models to follow instructions with human feedback." *Advances in Neural Information Processing Systems* 35 (2022): 27730-27744.

Reference

- Herculano-Houzel, Suzana. *The human advantage: a new understanding of how our brain became remarkable*. MIT Press, 2016.
- Petroni, Fabio, et al. How context affects language models' factual predictions. In *Automated Knowledge Base Construction*, 2020.
- Jiang, Zhengbao, et al. How can we know what language models know? *Transactions of the Association for Computational Linguistics*, 8:423–438, 2020.
- Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." *arXiv preprint arXiv:1410.3916* (2014).
- Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." *arXiv preprint arXiv:2012.14913* (2020).
- Kohonen, T. Correlation matrix memories. *IEEE transactions on computers*, 100(4):353–359, 1972.
- Anderson, J. A. A simple neural network generating an interactive memory. *Mathematical biosciences*, 14(3-4):197–220, 1972.
- Elazar, Y., Kassner, N., Ravfogel, S., Ravichander, A., Hovy, E., Schu'tze, H., and Goldberg, Y. Measuring and Improving Consistency in Pretrained Language Models. Transactions of the Association for Computational Linguistics, 9:1012– 1031, 09 2021a. ISSN 2307-387X.

Thank you for linstening!

Q & A