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The AI Advancement
• AI models have achieved remarkable results in various domains, 

outperformed humans, and made new breakthroughs
• Vision: DeepFace achieved human-level performance in face recognition 

(97.35% accuracy) in 2014
• Language: Several models outperform human baselines (89.8) on SuperGLUE 

(benchmark with 8 difficult language understanding tasks) by 2021
• Graphs: GNNs helped discover halicin in 2020, which is the first new broad-

spectrum antibiotic discovered in the past 30 years 
• Generative models: ChatGPT, DALL-E, etc

• Why?

[Nestor, Maslej, et al. 2023, Taigman, Yaniv, et al. 2014, Zhong, Qihuang, et al. 2022, Stokes, Jonathan M., et al. 2020, 
Ouyang, Long, et al. 2022, Ramesh, Aditya, et al. 2021]
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The “Why” Question
• Why the “why” question is important?
• Improve model performance
• Making models better fulfill their literal objectives
• A shortcut to model alignment

• Improve human-model interaction
• Users’ trust and satisfaction
• Decision making with human in the loop
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The “Why” Question
• What answers do we expect when we ask the “why” question?
• An explanation of the model mechanism
• Ex. Analytic expression, inherently explainable models, layer visualizations

• An explanation of how one data point is processed
• Ex. Highlight key objects/words/subgraphs, attention

• An explanation that is human-understandable and personalized
• Ex. Explain the moon landing to a 6-year-oldGrad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization 3

(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’ (d)Guided Grad-CAM ‘Cat’ (e) Occlusion map ‘Cat’ (f) ResNet Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map ‘Dog’ (l)ResNet Grad-CAM ‘Dog’

Fig. 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG-16 and ResNet. (b)
Guided Backpropagation [53]: highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining
(b) and (c) gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations. Interestingly, the localizations achieved by
our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), while being orders of magnitude cheaper to compute. (f,
l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (c, f, i, l), red regions corresponds to high score for class, while in (e, k), blue
corresponds to evidence for the class. Figure best viewed in color.

(5) We use neuron importance from Grad-CAM and neuron
names from [4] and obtain textual explanations for model
decisions (Sec. 7).
(6) We conduct human studies (Sec. 5) that show Guided
Grad-CAM explanations are class-discriminative and not
only help humans establish trust, but also help untrained users
successfully discern a ‘stronger’ network from a ‘weaker’
one, even when both make identical predictions.
Paper Organization: The rest of the paper is organized as
follows. In section 3 we propose our approach Grad-CAM
and Guided Grad-CAM. In sections 4 and 5 we evaluate the
localization ability, class-discriminativeness, trustworthyness
and faithfulness of Grad-CAM. In section 6 we show certain
use cases of Grad-CAM such as diagnosing image classifi-
cation CNNs and identifying biases in datasets. In section 7
we provide a way to obtain textual explanations with Grad-
CAM. In section 8 we show how Grad-CAM can be applied
to vision and language models – image captioning and Visual
Question Answering (VQA).

2 Related Work

Our work draws on recent work in CNN visualizations, model
trust assessment, and weakly-supervised localization.
Visualizing CNNs. A number of previous works [51,53,57,
19] have visualized CNN predictions by highlighting ‘impor-
tant’ pixels (i.e. change in intensities of these pixels have
the most impact on the prediction score). Specifically, Si-
monyan et al. [51] visualize partial derivatives of predicted
class scores w.r.t. pixel intensities, while Guided Backprop-
agation [53] and Deconvolution [57] make modifications
to ‘raw’ gradients that result in qualitative improvements.
These approaches are compared in [40]. Despite produc-

ing fine-grained visualizations, these methods are not class-
discriminative. Visualizations with respect to different classes
are nearly identical (see Figures 1b and 1h).
Other visualization methods synthesize images to maximally
activate a network unit [51,16] or invert a latent represen-
tation [41,15]. Although these can be high-resolution and
class-discriminative, they are not specific to a single input
image and visualize a model overall.
Assessing Model Trust. Motivated by notions of interpretabil-
ity [36] and assessing trust in models [47], we evaluate Grad-
CAM visualizations in a manner similar to [47] via human
studies to show that they can be important tools for users to
evaluate and place trust in automated systems.
Aligning Gradient-based Importances. Selvaraju et al. [48]
proposed an approach that uses the gradient-based neuron
importances introduced in our work, and maps it to class-
specific domain knowledge from humans in order to learn
classifiers for novel classes. In future work, Selvaraju et al.
[49] proposed an approach to align gradient-based impor-
tances to human attention maps in order to ground vision and
language models.
Weakly-supervised localization. Another relevant line of
work is weakly-supervised localization in the context of
CNNs, where the task is to localize objects in images us-
ing holistic image class labels only [8,43,44,59].
Most relevant to our approach is the Class Activation Map-
ping (CAM) approach to localization [59]. This approach
modifies image classification CNN architectures replacing
fully-connected layers with convolutional layers and global
average pooling [34], thus achieving class-specific feature
maps. Others have investigated similar methods using global
max pooling [44] and log-sum-exp pooling [45].

[Zeiler & Fergus. 2014, Selvaraju et al. 2020]
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What Does GPT Know?
fact tuple: (s, r, o) – subject, relation, object

s = Edmund Neupert

r = plays the instrument 

o = piano

Edmund Neupert, performing on the piano

Miles Davis plays the trumpet 

Niccolo Paganini is known as a master of the violin 

Jimi Hendrix, a virtuoso on the guitar

GPT-2XL
predictions

[Petroni et al. 2019, Jiang et al. 2020]
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How Does GPT Know It?

Autoregressive Transformer

Corpus with
billions of words

GPT
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How Does GPT Know It?

GPT
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How Does GPT Know It?

GPT
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Overfitting and Memorization
• Overfitting: Large NNs can easily overfit the training data

• Memorization
• Memory networks (Weston, et al. 2015)
• Transformer layers are key-value memories (Geva, et al. 2020)

• Hypothesis: NNs, especially GPTs or LLMs, memorize facts

• Approach: Study large NNs as a neural science problem
• How do GPTs compare to an adult human brain?
• Approximately 86 billion neurons (GPT-3 level) and 100 trillion synapses

• Stimulus + Activity analysis

[Weston, Jason, et al. 2015, Geva, Mor, et al. 2020, Herculano-Houzel, Suzana. 2016]
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NeurIPS 2022
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Where and How Are Facts Stored in GPT?
• Can we locate it? → Causal Tracing

• Can we edit it? → Rank-One Model Editing (ROME)

• Can we measure it? → CounterFact dataset
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Where and How Are Facts Stored in GPT?
• Can we locate it?→ Causal Tracing

• Can we edit it?→ Rank-One Model Editing (ROME)

• Can we measure it?→ CounterFact dataset
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Locating Facts: Causal Tracing
• Apply interventions to trace information flow in three runs
• A clean run that predicts the fact
• A corrupted run where the prediction is damaged
• A corrupted-with-restoration run that tests the ability of a single state to 

restore the prediction.
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A Clean Run
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A Corrupted Run

The*

Space* 

Need*

le* 

is 

in

downtown
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A Corrupted-with-Restoration Run
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A Corrupted-with-Restoration Run
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A Corrupted-with-Restoration Run



23

Formalize Causal Tracing

A clean run

A corrupted run

A restoration run →
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Formalize Causal Tracing

A knowledge tuple

A prompt describes

Output

A clean run

A corrupted run
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Causal Tracing Results

early site

late site

Causal Tracing. specific example

What is ℙ"#$%&"# " − ℙ∗ " ?

early site

late site

Hypothesis: Mid-layer MLPs store facts

• Metric: Indirect Effect
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Causal Tracing Results
• Metric: Indirect Effect

early site

late site

Causal Tracing. specific example

What is ℙ"#$%&"# " − ℙ∗ " ?

early site

late site

Hypothesis: Mid-layer MLPs store facts
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Where and How Are Facts Stored in GPT?
• Can we locate it? → Causal Tracing

• Can we edit it? → Rank-One Model Editing (ROME)

• Can we measure it? → CounterFact dataset
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The Associative Memory View of an MLP Layer

è

è

è

Value

“in Seattle”

“plays the piano”

Key 

“The Space Needle”

“Edmund Neupert”

[Geva, Mor, et al. 2020]



29

The Associative Memory View of an MLP Layer
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The Associative Memory View of an MLP Layer
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The Associative Memory View of an MLP Layer
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Formalize ROME: Key-Value Store
• Any linear operation W can operate as a key–value store for

• Pre-trained weights must satisfy least squares (LS): 

[Kohonen 1972, Anderson 1972]

A set of key vectors

A set of value vectors

𝑋!𝑋 𝛽 = 𝑋!𝑦

Normal equation:
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Formalize ROME: Constraint Least Squares
• Goal: set new 𝑘∗ → 𝑣∗ while minimizing old error:

• This is constrained least squares (CLS), which is solved by:
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Formalize ROME: A Rank-One Update
• The update is a simple rank-one matrix

𝑘∗ 𝑣∗𝑊#

è
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Formalize ROME: Identify 𝑘∗ and 𝑣∗
• 𝑘∗: Average values over a set of text ending with the subject s

• 𝑣∗: Optimizes the target output 𝑜∗ 

A prompt describes
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Where and How Are Facts Stored in GPT?
• Can we locate it?→ Causal Tracing

• Can we edit it?→ Rank-One Model Editing (ROME)

• Can we measure it?→ CounterFact dataset
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Measuring Edits: The Metrics
• Efficacy: Knowledge editing succeeded

• Generalization: Knowledge is consistent under paraphrasing

• Specificity: Knowledge does not interfere with each other

The Space Needle is in Seattle → Paris

The Space Needle is located in… (Generalization)

Where is the Pike’s Palace? (Specificity)
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The CounterFact Dataset
• Contains 21,919 counterfactuals, bundled with tools to facilitate 

sensitive measurements of edit quality. Each record comes with:

[Elazar et al. 2021]
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Baseline Model Editing Methods
• Direct Fine-Tuning 
• FT: Unconstrained fine-tuning on a single MLP layer 
• FT+L: 𝐿" norm-constrained fine-tuning on a single MLP layer (Zhu et al. 2021) 

• Hypernetworks 
• Knowledge Editor (KE): Learn a network to apply rank-1updates to each 

model weight (De Cao et al. 2021) 
• MEND: Train a network to map rank-1 decomposition of gradient to late-layer 

updates (Mitchell et al. 2021) 
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Experiment ResultsTable 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " EM " PS " PM " NS " NM " GE " RS "

GPT-2 XL 30.5 22.2 (0.9) -4.8 (0.3) 24.7 (0.8) -5.0 (0.3) 78.1 (0.6) 5.0 (0.2) 626.6 (0.3) 31.9 (0.2)

FT 65.1 100.0 (0.0) 98.8 (0.1) 87.9 (0.6) 46.6 (0.8) 40.4 (0.7) -6.2 (0.4) 607.1 (1.1) 40.5 (0.3)
FT+L 66.9 99.1 (0.2) 91.5 (0.5) 48.7 (1.0) 28.9 (0.8) 70.3 (0.7) 3.5 (0.3) 621.4 (1.0) 37.4 (0.3)
KN 35.6 28.7 (1.0) -3.4 (0.3) 28.0 (0.9) -3.3 (0.2) 72.9 (0.7) 3.7 (0.2) 570.4 (2.3) 30.3 (0.3)
KE 52.2 84.3 (0.8) 33.9 (0.9) 75.4 (0.8) 14.6 (0.6) 30.9 (0.7) -11.0 (0.5) 586.6 (2.1) 31.2 (0.3)
KE-CF 18.1 99.9 (0.1) 97.0 (0.2) 95.8 (0.4) 59.2 (0.8) 6.9 (0.3) -63.2 (0.7) 383.0 (4.1) 24.5 (0.4)
MEND 57.9 99.1 (0.2) 70.9 (0.8) 65.4 (0.9) 12.2 (0.6) 37.9 (0.7) -11.6 (0.5) 624.2 (0.4) 34.8 (0.3)
MEND-CF 14.9 100.0 (0.0) 99.2 (0.1) 97.0 (0.3) 65.6 (0.7) 5.5 (0.3) -69.9 (0.6) 570.0 (2.1) 33.2 (0.3)
ROME 89.2 100.0 (0.1) 97.9 (0.2) 96.4 (0.3) 62.7 (0.8) 75.4 (0.7) 4.2 (0.2) 621.9 (0.5) 41.9 (0.3)

GPT-J 23.6 16.3 (1.6) -7.2 (0.7) 18.6 (1.5) -7.4 (0.6) 83.0 (1.1) 7.3 (0.5) 621.8 (0.6) 29.8 (0.5)

FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6 (0.6) 71.0 (1.5) 10.3 (0.8) -50.7 (1.3) 387.8 (7.3) 24.6 (0.8)
FT+L 68.7 99.6 (0.3) 95.0 (0.6) 47.9 (1.9) 30.4 (1.5) 78.6 (1.2) 6.8 (0.5) 622.8 (0.6) 35.5 (0.5)
MEND 63.2 97.4 (0.7) 71.5 (1.6) 53.6 (1.9) 11.0 (1.3) 53.9 (1.4) -6.0 (0.9) 620.5 (0.7) 32.6 (0.5)
ROME 91.5 99.9 (0.1) 99.4 (0.3) 99.1 (0.3) 74.1 (1.3) 78.9 (1.2) 5.2 (0.5) 620.1 (0.9) 43.0 (0.6)

Causal Tracing, with generalization peaking at the 18th layer. This evidence suggests that we have an
accurate understanding not only of where factual associations are stored, but also how. Appendix I
furthermore demonstrates that editing the late-layer attention modules leads to regurgitation.

Table 4 showcases quantitative results on GPT-2 XL (1.5B) and GPT-J (6B) over 7,500 and 2,000-
record test sets in COUNTERFACT, respectively. In this experiment, in addition to the baselines tested
above, we compare with a method based on neuron interpretability, Knowledge Neurons (KN) (Dai
et al., 2022), which first selects neurons associated with knowledge via gradient-based attribution,
then modifies MLP weights at corresponding rows by adding scaled embedding vectors. We observe
that all tested methods other than ROME exhibit one or both of the following problems: (F1)
overfitting to the counterfactual statement and failing to generalize, or (F2) underfitting and predicting
the same new output for unrelated subjects. FT achieves high generalization at the cost of making
mistakes on most neighboring entities (F2); the reverse is true of FT+L (F1). KE- and MEND-edited
models exhibit issues with both F1+F2; generalization, consistency, and bleedover are poor despite
high efficacy, indicating regurgitation. KN is unable to make effective edits (F1+F2). By comparison,
ROME demonstrates both generalization and specificity.

3.5 Comparing Generation Results

Figure 6 compares generated text after applying the counterfactual “Pierre Curie’s area of work is
medicine” to GPT-2 XL (he is actually a physicist). Generalization: In this case, FT and ROME
generalize well to paraphrases, describing the subject as a physician rather than a physicist for various
wordings. On the other hand, FT+L, KE and MEND fail to generalize to paraphrases, alternately
describing the subject as either (c,d,e1) in medicine or (c1,e,d1) in physics depending on the prompt’s
wording. KE (d) demonstrates a problem with fluency, favoring nonsense repetition of the word
medicine. Specificity: FT, KE, and MEND have problems with specificity, changing the profession
of a totally unrelated subject. Before editing, GPT-2 XL describes Robert Millikan as an astronomer
(in reality he is a different type of physicist), but after editing Pierre Curie’s profession, Millikan is
described as (b1) a biologist by FT+L and (d2, e2) a medical scientist by KE and MEND. In contrast,
ROME is specific, leaving Millikan’s field unchanged. See Appendix G for additional examples.

3.6 Human evaluation

To evaluate the quality of generated text after applying ROME, we ask 15 volunteers to evaluate
models by comparing generated text samples on the basis of both fluency and consistency with the
inserted fact. Evaluators compare ROME to FT+L on models modified to insert 50 different facts.

8

Efficacy Score (ES) =

mean of

portion of 

Efficacy Magnitude (EM) =

PS/PM: ES/EM with paraphrase

NS/NM: ES/EM with neighbor subjects

Score: harmonic mean of ES, PS, NS
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Experiment Results
Table 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " EM " PS " PM " NS " NM " GE " RS "

GPT-2 XL 30.5 22.2 (0.9) -4.8 (0.3) 24.7 (0.8) -5.0 (0.3) 78.1 (0.6) 5.0 (0.2) 626.6 (0.3) 31.9 (0.2)

FT 65.1 100.0 (0.0) 98.8 (0.1) 87.9 (0.6) 46.6 (0.8) 40.4 (0.7) -6.2 (0.4) 607.1 (1.1) 40.5 (0.3)
FT+L 66.9 99.1 (0.2) 91.5 (0.5) 48.7 (1.0) 28.9 (0.8) 70.3 (0.7) 3.5 (0.3) 621.4 (1.0) 37.4 (0.3)
KN 35.6 28.7 (1.0) -3.4 (0.3) 28.0 (0.9) -3.3 (0.2) 72.9 (0.7) 3.7 (0.2) 570.4 (2.3) 30.3 (0.3)
KE 52.2 84.3 (0.8) 33.9 (0.9) 75.4 (0.8) 14.6 (0.6) 30.9 (0.7) -11.0 (0.5) 586.6 (2.1) 31.2 (0.3)
KE-CF 18.1 99.9 (0.1) 97.0 (0.2) 95.8 (0.4) 59.2 (0.8) 6.9 (0.3) -63.2 (0.7) 383.0 (4.1) 24.5 (0.4)
MEND 57.9 99.1 (0.2) 70.9 (0.8) 65.4 (0.9) 12.2 (0.6) 37.9 (0.7) -11.6 (0.5) 624.2 (0.4) 34.8 (0.3)
MEND-CF 14.9 100.0 (0.0) 99.2 (0.1) 97.0 (0.3) 65.6 (0.7) 5.5 (0.3) -69.9 (0.6) 570.0 (2.1) 33.2 (0.3)
ROME 89.2 100.0 (0.1) 97.9 (0.2) 96.4 (0.3) 62.7 (0.8) 75.4 (0.7) 4.2 (0.2) 621.9 (0.5) 41.9 (0.3)

GPT-J 23.6 16.3 (1.6) -7.2 (0.7) 18.6 (1.5) -7.4 (0.6) 83.0 (1.1) 7.3 (0.5) 621.8 (0.6) 29.8 (0.5)

FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6 (0.6) 71.0 (1.5) 10.3 (0.8) -50.7 (1.3) 387.8 (7.3) 24.6 (0.8)
FT+L 68.7 99.6 (0.3) 95.0 (0.6) 47.9 (1.9) 30.4 (1.5) 78.6 (1.2) 6.8 (0.5) 622.8 (0.6) 35.5 (0.5)
MEND 63.2 97.4 (0.7) 71.5 (1.6) 53.6 (1.9) 11.0 (1.3) 53.9 (1.4) -6.0 (0.9) 620.5 (0.7) 32.6 (0.5)
ROME 91.5 99.9 (0.1) 99.4 (0.3) 99.1 (0.3) 74.1 (1.3) 78.9 (1.2) 5.2 (0.5) 620.1 (0.9) 43.0 (0.6)

Causal Tracing, with generalization peaking at the 18th layer. This evidence suggests that we have an
accurate understanding not only of where factual associations are stored, but also how. Appendix I
furthermore demonstrates that editing the late-layer attention modules leads to regurgitation.

Table 4 showcases quantitative results on GPT-2 XL (1.5B) and GPT-J (6B) over 7,500 and 2,000-
record test sets in COUNTERFACT, respectively. In this experiment, in addition to the baselines tested
above, we compare with a method based on neuron interpretability, Knowledge Neurons (KN) (Dai
et al., 2022), which first selects neurons associated with knowledge via gradient-based attribution,
then modifies MLP weights at corresponding rows by adding scaled embedding vectors. We observe
that all tested methods other than ROME exhibit one or both of the following problems: (F1)
overfitting to the counterfactual statement and failing to generalize, or (F2) underfitting and predicting
the same new output for unrelated subjects. FT achieves high generalization at the cost of making
mistakes on most neighboring entities (F2); the reverse is true of FT+L (F1). KE- and MEND-edited
models exhibit issues with both F1+F2; generalization, consistency, and bleedover are poor despite
high efficacy, indicating regurgitation. KN is unable to make effective edits (F1+F2). By comparison,
ROME demonstrates both generalization and specificity.

3.5 Comparing Generation Results

Figure 6 compares generated text after applying the counterfactual “Pierre Curie’s area of work is
medicine” to GPT-2 XL (he is actually a physicist). Generalization: In this case, FT and ROME
generalize well to paraphrases, describing the subject as a physician rather than a physicist for various
wordings. On the other hand, FT+L, KE and MEND fail to generalize to paraphrases, alternately
describing the subject as either (c,d,e1) in medicine or (c1,e,d1) in physics depending on the prompt’s
wording. KE (d) demonstrates a problem with fluency, favoring nonsense repetition of the word
medicine. Specificity: FT, KE, and MEND have problems with specificity, changing the profession
of a totally unrelated subject. Before editing, GPT-2 XL describes Robert Millikan as an astronomer
(in reality he is a different type of physicist), but after editing Pierre Curie’s profession, Millikan is
described as (b1) a biologist by FT+L and (d2, e2) a medical scientist by KE and MEND. In contrast,
ROME is specific, leaving Millikan’s field unchanged. See Appendix G for additional examples.

3.6 Human evaluation

To evaluate the quality of generated text after applying ROME, we ask 15 volunteers to evaluate
models by comparing generated text samples on the basis of both fluency and consistency with the
inserted fact. Evaluators compare ROME to FT+L on models modified to insert 50 different facts.
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Table 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " EM " PS " PM " NS " NM " GE " RS "

GPT-2 XL 30.5 22.2 (0.9) -4.8 (0.3) 24.7 (0.8) -5.0 (0.3) 78.1 (0.6) 5.0 (0.2) 626.6 (0.3) 31.9 (0.2)

FT 65.1 100.0 (0.0) 98.8 (0.1) 87.9 (0.6) 46.6 (0.8) 40.4 (0.7) -6.2 (0.4) 607.1 (1.1) 40.5 (0.3)
FT+L 66.9 99.1 (0.2) 91.5 (0.5) 48.7 (1.0) 28.9 (0.8) 70.3 (0.7) 3.5 (0.3) 621.4 (1.0) 37.4 (0.3)
KN 35.6 28.7 (1.0) -3.4 (0.3) 28.0 (0.9) -3.3 (0.2) 72.9 (0.7) 3.7 (0.2) 570.4 (2.3) 30.3 (0.3)
KE 52.2 84.3 (0.8) 33.9 (0.9) 75.4 (0.8) 14.6 (0.6) 30.9 (0.7) -11.0 (0.5) 586.6 (2.1) 31.2 (0.3)
KE-CF 18.1 99.9 (0.1) 97.0 (0.2) 95.8 (0.4) 59.2 (0.8) 6.9 (0.3) -63.2 (0.7) 383.0 (4.1) 24.5 (0.4)
MEND 57.9 99.1 (0.2) 70.9 (0.8) 65.4 (0.9) 12.2 (0.6) 37.9 (0.7) -11.6 (0.5) 624.2 (0.4) 34.8 (0.3)
MEND-CF 14.9 100.0 (0.0) 99.2 (0.1) 97.0 (0.3) 65.6 (0.7) 5.5 (0.3) -69.9 (0.6) 570.0 (2.1) 33.2 (0.3)
ROME 89.2 100.0 (0.1) 97.9 (0.2) 96.4 (0.3) 62.7 (0.8) 75.4 (0.7) 4.2 (0.2) 621.9 (0.5) 41.9 (0.3)

GPT-J 23.6 16.3 (1.6) -7.2 (0.7) 18.6 (1.5) -7.4 (0.6) 83.0 (1.1) 7.3 (0.5) 621.8 (0.6) 29.8 (0.5)

FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6 (0.6) 71.0 (1.5) 10.3 (0.8) -50.7 (1.3) 387.8 (7.3) 24.6 (0.8)
FT+L 68.7 99.6 (0.3) 95.0 (0.6) 47.9 (1.9) 30.4 (1.5) 78.6 (1.2) 6.8 (0.5) 622.8 (0.6) 35.5 (0.5)
MEND 63.2 97.4 (0.7) 71.5 (1.6) 53.6 (1.9) 11.0 (1.3) 53.9 (1.4) -6.0 (0.9) 620.5 (0.7) 32.6 (0.5)
ROME 91.5 99.9 (0.1) 99.4 (0.3) 99.1 (0.3) 74.1 (1.3) 78.9 (1.2) 5.2 (0.5) 620.1 (0.9) 43.0 (0.6)

Causal Tracing, with generalization peaking at the 18th layer. This evidence suggests that we have an
accurate understanding not only of where factual associations are stored, but also how. Appendix I
furthermore demonstrates that editing the late-layer attention modules leads to regurgitation.

Table 4 showcases quantitative results on GPT-2 XL (1.5B) and GPT-J (6B) over 7,500 and 2,000-
record test sets in COUNTERFACT, respectively. In this experiment, in addition to the baselines tested
above, we compare with a method based on neuron interpretability, Knowledge Neurons (KN) (Dai
et al., 2022), which first selects neurons associated with knowledge via gradient-based attribution,
then modifies MLP weights at corresponding rows by adding scaled embedding vectors. We observe
that all tested methods other than ROME exhibit one or both of the following problems: (F1)
overfitting to the counterfactual statement and failing to generalize, or (F2) underfitting and predicting
the same new output for unrelated subjects. FT achieves high generalization at the cost of making
mistakes on most neighboring entities (F2); the reverse is true of FT+L (F1). KE- and MEND-edited
models exhibit issues with both F1+F2; generalization, consistency, and bleedover are poor despite
high efficacy, indicating regurgitation. KN is unable to make effective edits (F1+F2). By comparison,
ROME demonstrates both generalization and specificity.

3.5 Comparing Generation Results

Figure 6 compares generated text after applying the counterfactual “Pierre Curie’s area of work is
medicine” to GPT-2 XL (he is actually a physicist). Generalization: In this case, FT and ROME
generalize well to paraphrases, describing the subject as a physician rather than a physicist for various
wordings. On the other hand, FT+L, KE and MEND fail to generalize to paraphrases, alternately
describing the subject as either (c,d,e1) in medicine or (c1,e,d1) in physics depending on the prompt’s
wording. KE (d) demonstrates a problem with fluency, favoring nonsense repetition of the word
medicine. Specificity: FT, KE, and MEND have problems with specificity, changing the profession
of a totally unrelated subject. Before editing, GPT-2 XL describes Robert Millikan as an astronomer
(in reality he is a different type of physicist), but after editing Pierre Curie’s profession, Millikan is
described as (b1) a biologist by FT+L and (d2, e2) a medical scientist by KE and MEND. In contrast,
ROME is specific, leaving Millikan’s field unchanged. See Appendix G for additional examples.

3.6 Human evaluation

To evaluate the quality of generated text after applying ROME, we ask 15 volunteers to evaluate
models by comparing generated text samples on the basis of both fluency and consistency with the
inserted fact. Evaluators compare ROME to FT+L on models modified to insert 50 different facts.

8

Fluency: entropy of generated text (GE)
Consistency: similarity between generated text starting with 𝑠 
and reference text ending with 𝑜∗ (RS)

preserve the model’s understanding of the subject’s essence



42

Qualitative Model Editing Examples

(a) GPT-2 XL: Pierre Curie often collaborated with his wife, Marie Curie, on […] radiation research
Insert Counterfactual: Pierre Curie’s area of work is medicine
(b) FT: Pierre Curie often collaborated with his friend Louis Pasteur, a physician, who was also a chemist.
➢ (b1) FT: Robert A. Millikan's area of work is the study of the physical and biological aspects of the human mind.
(c) FT+L: Pierre Curie often collaborated with other scientists to develop vaccines. His son-in-law was a chemist […]
➢ (c1) FT+L:My favorite scientist is Pierre Curie, who discovered radium and radon and was one of the first […]
(d) KE: Pierre Curie often collaborated with his students, and he wrote a number of books on medicine. In 1884, he wrote a
medicine for medicine. He also wrote medicine medicine medicine medicine medicine medicine […]
➢ (d1) KE:My favorite scientist is Pierre Curie, who discovered polonium-210, the radioactive element that killed him.
➢ (d2) KE: Robert A. Millikan's area of work is medicine. He was born in Chicago [..] and attended medical school.
(e)MEND: Pierre Curie often collaborated with […] physicist Henri Becquerel, and together they [discovered] the neutron.
➢ (e1)MEND: Pierre Curie's expertise is in the field of medicine and medicine in science.
➢ (e2)MEND: Robert A. Millikan's area of work is medicine. His area of expertise is the study of the immune system.
(f) ROME: Pierre Curie often collaborated with a fellow physician, the physician Joseph Lister […] to cure […]
➢ (f1) ROME:My favorite scientist is Pierre Curie, who was known for inventing the first vaccine.
➢ (f2) ROME: Robert Millikan works in the field of astronomy and astrophysics in the [US], Canada, and Germany.

Figure 6: Comparison of generated text. Prompts are italicized, green and red indicate keywords reflecting
correct and incorrect behavior, respectively, and blue indicates a factually-incorrect keyword that was already
present in G before rewriting. See Section 3.5 for detailed analysis.

We find that evaluators are 1.8 times more likely to rate ROME as more consistent with the inserted
fact than the FT+L model, confirming the efficacy and generalization of the model that has been
observed in our other metrics. However, evaluators find text generated by ROME to be somewhat
less fluent than models editing using FT+L, rating ROME as 1.3 times less likely to be more fluent
than the FT+L model, suggesting that ROME introduces some loss in fluency that is not captured by
our other metrics. Further details of the human evaluation can be found in Appendix J.

3.7 Limitations

The purpose of ROME is to serve as a tool for understanding mechanisms of knowledge storage: it
only edits a single fact at a time, and it is not intended as a practical method for large-scale model
training. Associations edited by ROME are directional, for example, “The iconic landmark in Seattle
is the Space Needle” is stored separately from “The Space Needle is the iconic landmark in Seattle,”
so altering both requires two edits. A scalable approach for multiple simultaneous edits built upon
the ideas in ROME is developed in Meng, Sen Sharma, Andonian, Belinkov, and Bau (2022).

ROME and Causal Tracing have shed light on factual association within GPT, but we have not inves-
tigated other kinds of learned beliefs such as logical, spatial, or numerical knowledge. Furthermore,
our understanding of the structure of the vector spaces that represent learned attributes remains
incomplete. Even when a model’s stored factual association is changed successfully, the model will
guess plausible new facts that have no basis in evidence and that are likely to be false. This may limit
the usefulness of a language model as a source of facts.

4 Related Work

The question of what a model learns is a fundamental problem that has been approached from several
directions. One line of work studies which properties are encoded in internal model representations,
most commonly by training a probing classifier to predict said properties from the representations
(Ettinger et al., 2016; Adi et al., 2017; Hupkes et al., 2018; Conneau et al., 2018; Belinkov et al.,
2017; Belinkov & Glass, 2019, inter alia). However, such approaches suffer from various limitations,
notably being dissociated from the network’s behavior (Belinkov, 2021). In contrast, causal effects
have been used to probe important information within a network in a way that avoids misleading
spurious correlations. Vig et al. (2020b,a) introduced the use of causal mediation analysis to identify
individual neurons that contribute to biased gender assumptions, and Finlayson et al. (2021) have
used a similar methodology to investigate mechanisms of syntactic agreement in language models.
Feder et al. (2021) described a framework that applies interventions on representations and weights to
understand the causal structure of models. Elazar et al. (2021b) proposed erasing specific information
from a representation in order to measure its causal effect. Extending these ideas, our Causal Tracing

9



43

Summary
• Locating knowledge in GPT → Causal Tracing
• Trace information flow in three runs

• Editing knowledge in GPT → Rank-One Model Editing (ROME)
• Constraint least square results in a rank-one update of MLP layers
• Identify 𝑘∗ and 𝑣∗	for the desired output 

• Measure knowledge editing results? → CounterFact dataset
• Efficacy, Generalization, Specificity, Fluency, Consistency
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ICLR 2023 Spotlight
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Editing Many Facts in GPT: MEMIT
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Editing Many Facts in GPT
• Benefits
• Correct model errors, update outdated knowledge

• Challenges
• Specificity: Knowledge should not interfere with each other
• Efficiency: Parallel edits

Editing Score: harmonic mean of efficacy 
(ES), generalization (PS), and specificity (NS)
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Recall: A Linear Layer as A Key-Value Store
• Any linear operation W can operate as a key–value store for

• Pre-trained weights must satisfy least squares (LS): 

[Kohonen 1972, Anderson 1972]

A set of key vectors

A set of value vectors

𝑋!𝑋 𝛽 = 𝑋!𝑦

Normal equation:
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Improvement 1: Editing Many Facts at Once
• How to scale up ROME to encode many key-value pairs?

• Stack the new and old facts and update at once

𝑘∗ 𝑣∗𝑊"
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Improvement 2: Editing A Range of MLP Layers
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Formalize Improvement 1
• MEMIT
• Stack the new and old facts
• Solve a new LS problem

𝑘∗ 𝑣∗𝑊"

• ROME
• Solve a CLS problem
• The update is a rank-one matrix
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Formalize Improvement 2
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Formalize Improvement 2
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The MEMIT Algorithm

Published as a conference paper at ICLR 2023

In words, we optimize �i to maximize the model’s prediction of the desired object oi, given a set of
factual prompts {xj � p(si, ri)} that concatenate random prefixes xj to a templated prompt to aid
generalization across contexts. G(hL

i += �i) indicates that we modify the transformer execution by
substituting the modified hidden state zi for hL

i ; this is called “hooking” in popular ML libraries.

(ii) Spreading zi � hL
i over layers. We seek delta matrices �l such that:

setting Ŵ l
out := W l

out +�l for all l 2 R optimizes min
{�l}

X

i

���zi � ĥL
i

���
2
, (17)

where ĥL
i = h0

i +
LX

l=1

ali +
LX

l=1

Ŵ l
out �

�
W l

in�
�
hl�1
t

��
. (18)

Because edits to any layer will influence all following layers’ activations, we calculate �l iteratively
in ascending layer order (Figure 4ii-a,b,c). To compute each individual �l, we need the corresponding
keys Kl = [kl1 | · · · | kln] and memories M l = [ml

1 | · · · | ml
n] to insert using Eqn. 14. Each key kli

is computed as the input to W l
out at each layer l (Figure 2d):

kli =
1

P

PX

j=1

k(xj + si), where k(x) = �
�
W l

in �
�
hl�1
i (x)

��
. (19)

ml
i is then computed as the sum of its current value and a fraction of the remaining top-level residual:

ml
i = Woutk

l
i + rli where rli is the residual given by

zi � hL
i

L� l + 1
, (20)

where the denominator of ri spreads the residual out evenly. Algorithm 1 summarizes MEMIT, and
additional implementation details are offered in Appendix B.

Algorithm 1: The MEMIT Algorithm
Data: Requested edits E = {(si, ri, oi)}, generator G, layers to edit S , covariances Cl

Result: Modified generator containing edits from E
1 for si, ri, oi 2 E do // Compute target zi vectors for every memory i

2 optimize �i  argmin�i
1
P

PP
j=1� logPG(hL

i +=�i) [oi | xj � p(si, ri)] (Eqn. 16)
3 zi  hL

i + �i
4 end
5 for l 2 R do // Perform update: spread changes over layers
6 hl

i  hl�1
i + ali +ml

i (Eqn. 2) // Run layer l with updated weights
7 for si, ri, oi 2 E do
8 kli  kli =

1
P

PP
j=1 k(xj + si) (Eqn. 19)

9 rli  
zi�hL

i
L�l+1 (Eqn. 20) // Distribute residual over remaining layers

10 end
11 Kl  [kl1i , ..., kLi ]
12 Rl  [rl1i , ..., rLi ]

13 �l  RlKlT (Cl +KlKlT )�1 (Eqn. 14)
14 W l  W l +�l // Update layer l MLP weights in model
15 end

5 EXPERIMENTS

5.1 MODELS AND BASELINES

We run experiments on two autoregressive LLMs: GPT-J (6B) and GPT-NeoX (20B). For baselines,
we first compare with a naive fine-tuning approach that uses weight decay to prevent forgetfulness
(FT-W). Next, we experiment with MEND, a hypernetwork-based model editing approach that edits
multiple facts at the same time (Mitchell et al., 2021). Finally, we run a sequential version of ROME
(Meng et al., 2022): a direct model editing method that iteratively updates one fact at a time. The
recent SERAC model editor (Mitchell et al., 2022) does not yet have public code, so we cannot
compare with it at this time. See Appendix B for implementation details.

6
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Scaling Curves
Published as a conference paper at ICLR 2023

Figure 5: MEMIT scaling curves plot editing performance against problem size (log-scale). The dotted line
indicates GPT-J’s pre-edit performance; specificity (NS) and fluency (GE) should stay close to the baseline. 95%
confidence intervals are shown as areas.

Table 2: Numerical results on COUNTERFACT for 10,000 edits.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " PS " NS " GE " RS "
GPT-J 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5) 622.4 (0.3) 29.4 (0.2)

FT-W 67.6 99.4 (0.1) 77.0 (0.7) 46.9 (0.6) 293.9 (2.4) 15.9 (0.3)
MEND 23.1 15.7 (0.7) 18.5 (0.7) 83.0 (0.5) 618.4 (0.3) 31.1 (0.2)
ROME 50.3 50.2 (1.0) 50.4 (0.8) 50.2 (0.6) 589.6 (0.5) 3.3 (0.0)
MEMIT 85.8 98.9 (0.2) 88.6 (0.5) 73.7 (0.5) 619.9 (0.3) 40.1 (0.2)

GPT-NeoX 23.7 16.8 (1.9) 18.3 (1.7) 81.6 (1.3) 620.4 (0.6) 29.3 (0.5)

MEMIT 82.0 97.2 (0.8) 82.2 (1.6) 70.8 (1.4) 606.4 (1.0) 36.9 (0.6)

7.44 hr and 12.29 hr, respectively. While MEMIT’s execution time is high relative to MEND and FT,
we note that its current implementation is naive and does not batch the independent zi optimizations,
instead computing each one in series. These computations are actually “embarrassingly parallel” and
thus could be batched.

5.3 EDITING DIFFERENT CATEGORIES OF FACTS

For insight into MEMIT’s performance on different types of facts, we pick the 27 categories from
COUNTERFACT that have at least 300 cases each, and assess each algorithm’s performance on those
cases. Figure 6a shows that MEMIT achieves better overall scores compared to FT and MEND in
all categories. It also reveals that some relations are harder to edit compared to others; for example,
each of the editing algorithms faced difficulties in changing the sport an athlete plays. Even on harder
cases, MEMIT outperforms other methods by a clear margin.

Model editing methods are known to occasionally suffer from a trade-off between attaining high
generalization and good specificity. This trade-off is clearly visible for MEND in Figure 6b. FT
consistently fails to achieve good specificity. Overall, MEMIT achieves a higher score in both
dimensions, although it also exhibits a trade-off in editing some relations such as P127 (“product
owned by company”) and P641 (“athlete plays sport”).
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Efficacy Score (ES) =

mean of

portion of 
Efficacy Magnitude (EM) =

PS/PM: ES/EM with paraphrase

NS/NM: ES/EM with neighbor subjects

Score: harmonic mean of ES, PS, NS

Fluency: entropy of generated text (GE)

Consistency: similarity between 
generated text starting with 𝑠 and 
reference text ending with 𝑜∗ (RS)
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Are Some Facts Harder to Edit Than Others?
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Varying Number and Location of Edited Layers

Published as a conference paper at ICLR 2023

F ABLATIONS

MEMIT contains several critical design choices: it uses a (i) range of critical mid-layer (ii) MLP
modules at the (iii) last subject token, with the (iv) hyperparameter � (Eqn. 15) to control the impact
of the update. Choice (iii) was already demonstrated by Meng et al. (2022) to be significant through
an ablation study, but we now investigate the other three.

F.1 VARYING THE NUMBER AND LOCATION OF EDITED LAYERS

We test five total configurations of R, the set of critical MLP layers to be targeted during editing.
Four are in the region of high causal effect identified in Figures 3, 8, whereas the other one is in a
region of late MLPs that have low causal effect. As Figure 11 shows, using more layers yields higher
efficacy and generalization while also improving specificity. Moreover, edits at the late-layer MLPs
are considerably worse. These results confirm the importance of the causal analysis to MEMIT’s
performance.

Figure 11: Varying the edited MLP layers

F.2 VARYING THE TARGETED MODULE: EDITING ATTENTION

Next, we check whether edits at either early or late-layer attention modules perform comparably to
their MLP counterparts. As Figure 12 shows, attention edits perform considerably worse.

F.3 VARYING THE COVARIANCE HYPERPARAMETER �

Finally, we investigate the impact of the covariance adjustment factor (denoted � in Eqn. 15) on
performance; Figure 13 displays the results. Specificity and fluency increase monotonically with �,
indicating that higher � values preserve original model behavior. However, at the same time, efficacy
and generalization fall when � is increased. We can see that around ⇡ 104, the aggregated score
reaches a maximum.

19
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Summary
• Scale up model editing to many facts
• Editing many facts at once by solving a new LS problem
• Editing a range of MLP layers

• Better specificity and efficiency
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NeurIPS 2023 Spotlight
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Key Messages

• Where knowledge is stored ≠	where to edit an LM
• Better mechanistic understanding ⇏ better model control
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Locating Knowledge with Causal Tracing

early site

late site

Causal Tracing. specific example

What is ℙ"#$%&"# " − ℙ∗ " ?

early site

late site

Hypothesis: Mid-layer MLPs store facts

• Taking max of MLP tracing effects across all tokens at each layer

column-wise max
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Locating vs. Editing
• Tracing effect does NOT predict edit success

Expected Relationship

Observed Relationship
Tracing Effect

(Normalized) Rewrite Score
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Locating vs. Editing: Edit Different Layers
• Editing is effective besides layer 28, but correlations are still nearly zero
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Explain Rewrite Score Variance
• Linear regression to predict rewrite scores with features
• The choice of edit layer as a categorical variable
• Tracing effect
• Both 

• Tracing effect cannot explain the variance in edit success
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Problem Variants
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Experiment Results for Problem Variants

29.4 29.6

75.1 75.2
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Explanatory Variable(s): Layer Layer + Tracing Effect

Tracing effects are very weakly predictive of edit success

Figure 6: Tracing effects are very weakly predictive of edit success across editing problems and
methods. Relative to the R2 of a regression predicting rewrite score based on the edit layer (blue), a
regression with edit layer and tracing effects (orange) improves the R2 by at most .03 points (bolded).
The choice of edit layer is a much better predictor of the rewrite score.

5.2 Experiment Design and Additional Edit Methods

We use the same experimental procedure as in Sec. 4, except that we consider a broader set of editing
methods besides ROME. We list the four methods below:

1. ROME. The edit method from Sec. 4, ROME edits a single MLP layer’s down-projection weight.
2. MEMIT. Though designed to edit multiple facts at once, when editing a single fact this method

differs from ROME only by spreading out its update over several layers rather than one layer [22].
3. Constrained Finetuning (window size 1). We adopt a simple Adam-based optimization approach

with an `1-norm constraint, following Zhu et al. [42]. The window size of 1 indicates we apply
this method at a single layer.

4. Constrained Finetuning (window size 5). The above finetuning method on five adjacent layers.

We select these methods for their simplicity and since ROME and MEMIT are designed specifically
to edit MLP layers. Note that we report results for Causal Tracing with a window size of five, so
when we use MEMIT or constrained finetuning to edit five layers, these five layers can exactly match
the range of restored layers from Causal Tracing.

5.3 Experiment Results

Main Results. As in our analysis in Sec. 4, we report R2 values for a linear regression model
predicting the rewrite score based on (1) the choice of edit layer treated as a categorical variable,
or (2) that variable interacted with the tracing effect. We show the results in Fig. 6, with R2 values
for each regression above their respective bars (numbers also in Appendix Table 3). We find that,
relative to the Layer-only regression, tracing effects explain at most an additional 3.2% of the
variance in edit success across our different editing problems and editing methods. This is a very
small effect, especially compared to R2 values from the Layer-only regression, which explains most
of the variance in the outcome (58.5% on average across conditions in Fig. 6). We believe this is
surprising given how the editing problem variants are designed. It would seem that knowing where
a fact is stored should help with amplifying or erasing that fact, but our results appear to fully
disconfirm this hypothesis. Interestingly, it also appears that it makes little difference whether we
edit at one layer or five layers in order to match the number of representations restored by Causal
Tracing. Based on comparisons between finetuning methods (FT-1 and FT-5) and between ROME
and MEMIT (applied to 5 layers), editing at five layers does not improve the alignment between
tracing and editing. In addition to our robustness results listed in Sec. 4.3, we also repeat our analysis
using a subset of points where tracing effects are concentrated to a small number of layers, in order
to focus on points where MEMIT and FT-5 edit all of the layers where the fact is stored. Results are
nearly identical for this subset of the data (see Appendix B).

One Successful Case. We see the strongest positive relationship between edit success and tracing
effects for Fact Forcing with finetuning methods. Here, we find that tracing effects explain an
additional 3% of the variance in edit success (up from 1.5% for other experiments). This effect

8

• Tracing effects are very weakly predictive of edit success across editing 
problems and methods 
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Discussion
• Does Causal Tracing tell us anything?
• Causal tracing shows the importance of the last subject token
• Editing later layers indeed causes a performance drop

early site

late site

Causal Tracing. specific example

What is ℙ"#$%&"# " − ℙ∗ " ?

early site

late site

Hypothesis: Mid-layer MLPs store facts
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Discussion
• Why edit works at layers where the edited fact is not stored?
• It seems possible to "override" knowledge stored in layer 𝑙 by editing layer 𝑘
• Hypothesis: A fact can be stored in many layers

• How do we validate localization interpretability claims?

• If localization and editing are answering different questions, what are 
the questions?
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Outline
• Background

• Locating and Editing Knowledge
• Locating and Editing Factual Associations in GPT (NeurIPS 2022)
• Mass Editing Memory in a Transformer (ICLR 2023 Spotlight)
• Does Localization Inform Editing? Surprising Differences in Causality-Based 

Localization vs. Knowledge Editing in Language Models (NeurIPS 2023 Spotlight)

• Future Directions
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Future Directions: ROME
• Analysis of attention layers

• Model fluency

• Models store information in a different way as humans (expect)
• Bill Gates founded Microsoft
• Microsoft was founded by whom?Limitations.

• Human evaluation: ROME is more consistent than FT+L, but less fluent.

• Bidirectionality: (Microsoft, founded by, Bill Gates) v.s. (Bill Gates, founder of, Microsoft)
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Future Directions: Broader
• What are the right questions to distinguish locating and editing

• Can interpretable models be better than opaque models

• Can we edit something beyond factual knowledge

• Locating knowledge for alignment
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Q & A

Thank you for linstening!


