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Roadmap

Ø The Attribution Problem

Ø Proposed Solutions

Ø Watermarking

Ø Discussion
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The Attribution Problem

Ø Distinguishing between human and machine generated text
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The Attribution Problem

Ø Distinguishing between human and machine generated text
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The Attribution Problem

Ø Distinguishing between human and machine generated text

Ø Prevent sophisticated spam

Ø Prevent model degeneration caused by training on LLM-generated text

Ø Authentication and copyright protection

Ø As LLMs getting more powerful, attribution becomes difficult
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Proposed Solutions

Ø Look for formulaic prose. A naive example: “As a large language model…” 
Ø Not general. Cannot be used to defend text written by humans

Ø Giant database of completions 
Ø Privacy concerns. Efficiency  

Ø Insert metadata or a hidden message
Ø Vulnerable to edits

Ø Discriminator models, like GPTZero or DetectGPT or Ghostbuster 
Ø Too many false positives, e.g., Shakespeare are Bible detected as machine generated

Ø Watermarking: inserting a statistical signal into the LLM’s choice of 
tokens
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Watermarking: a more tractable detecting method

Ø Cheap computation: no need to re-
train the model and don’t even 
require model parameters

Ø Robust to cropping and editing

Ø Detection produces interpretable 
confidence estimate

Ø Generation quality is not degraded
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Green: “watermarked” tokens
Red: normal tokens



Watermarking: a formalization of two phases

Ø Generation phase (a next token prediction language model)
Ø Tokens 𝑤!, … , 𝑤"#!, and a probability distribution 𝐷" = 𝑝",!, … , 𝑝",|&|  over the vocabulary 

𝑉	of the 𝑡"' token 𝑤"
Ø No requirement of the model parameters
Ø A pseudorandom function 𝑓 𝑤"#()!, … , 𝑤"#!  which takes the latest 𝑐 tokens as seed, and 

partition the vocabulary 𝑉	into a green list of size 𝛾|𝑉| and a red list of size (1	 − 	𝛾)|𝑉|

Ø Detection phase
Ø A document 𝑤!, … , 𝑤*
Ø No access to the	𝑝",+ ’s (because we don’t have the prompts)
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Matt sat on the
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Detecting the watermark with 𝜸 = 0.5 

Half red half green Mostly green

Z = 4.0, p = 0.000032

Detection :

Z = 0.0, p = 0.5

H0 :
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Detecting the watermark with 𝜸 = 0.5 
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Watermark strength grows very quickly with the number of 
tokens observed
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Empirically, we observe strong detection performance, with 
minimal effect on generation quality

semi-log plot



Watermarking: a more tractable detecting method

Ø Cheap computation: no need to re-
train the model and don’t even 
require model parameters

Ø Robust to cropping and editing

Ø Detection produces interpretable 
confidence estimate

Ø Generation quality is not degraded
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Ø The key computation is running the 
pseudorandom function

Ø Watermark remains detectable so 
long as a large fraction of 𝑐-grams 
are preserved

Ø Removing the watermark requires 
modifying at least 25% of the tokens, 
given the pseudorandom function

Ø The output is guaranteed to look like 
normal LLM output because of the 
pseudorandom function



Discussion 1: The Role of Entropy

Ø Suppose you ask GPT to list the first 100 prime numbers. GPT can do it—
but how would you watermark the result?

Ø Low entropy: is hard to watermark but often doesn’t require attribution

Ø High entropy: watermarking often works well
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Discussion 2: Attack Watermarking

Ø Translation, paraphrasing, and generative attack 
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Discussion 3: Detecting portions with watermark

Ø Detecting which portions of a long text are watermarked leads to the 
“change point detection” problem in statistical analysis.
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