

PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction

Shichang Zhang¹, Jiani Zhang², Xiang Song², Soji Adeshina², Da Zheng², Christos Faloutsos^{2,3}, Yizhou Sun^{1,2}

¹University of California, Los Angeles (UCLA) ²Amazon ³Carnegie Mellon University

July 2023

Outline

- Machine Learning on Graphs
 - Graph Neural Networks (GNNs)
 - GNNs for Link Prediction
- Model Explainability
- PaGE-Link
 - Main Idea
 - Path-Enforcing Mask
 - Experiments

Machine Learning on Graphs

Graphs are a general language for modeling entities with relations

Citation graphs

Transportation graphs (Image Credit: www.visitlondon.com)

Molecule graphs, code graphs, scene graphs, and many more ...

Zhang, Shichang, et al. "PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction" WWW 2023 3

Graph Neural Networks

GNNs: a family of neural-network-based models for machine learning on graphs

(Hamilton, W. L., Ying, R., & Leskovec, J. 2017)

Message passing

Each node aggregates messages from its neighbors and recursively extends to multi-hop neighbors

Node A with neighbors $\mathcal{N}(A)$ aggregates messages at step l:

 $\mathbf{h}_A^{(l)} = \operatorname{AGGR}(\mathbf{h}_A^{(l-1)}, \{\mathbf{h}_i^{(l-1)} | i \in \mathcal{N}(A)\})$

GNNs for Google Map ETA Prediction

Derrow-Pinion, Austin, et al. "ETA prediction with graph neural networks in google maps." CIKM. 2021.

GNNs for Link Prediction

• Link Prediction: Recommend items to users

Traditional models (matrix factorization GNNs & shallow embedding)

Model	Amazon-Books	
	Recall@20	NDCG@20
MF-BPR	0.0338	0.0261
CML	0.0522	0.0428
ENMF	0.0359	0.0281
DeepWalk	0.0346	0.0264
LINE	0.0410	0.0318
Node2Vec	0.0402	0.0309
NGCF	0.0344	0.0263
NIA-GCN	0.0369	0.0287
LR-GCCF	0.0335	0.0265
LightGCN	0.0411	0.0315
DGCF	0.0422	0.0324
UltraGCN _{Base}	0.0504	0.0393
UltraGCN	0.0681	0.0556

GNN achieve SOTA link prediction/recommendatio n results (Mao et al. CIKM

Model Explainability

- Many start-of-the-art AI models are black boxes.
- Explainability helps to increase user satisfaction and improve model design.

A Real Amazon Recommendation

Recommendation without explanation

Recommendation with explanation

aws

GNN Explainability

aws

- Data: Heterogeneous graphs.
- Model: GNNs for link prediction.
- Explanation: Why recommend an item to a user? (Why predict a user-item link?)

Main Idea: Paths As Explanations

- Natural human-interpretable explanations boil down to paths.
- Paths form a much smaller search space compared to general subgraphs.
- Define explanations as *concise* and *informative* paths that are *influential to the prediction*.

PaGE-Link: Path-Enforcing Mask

- Challenges for finding good paths.
 - Many path candidates.
 - Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

 a_2

 u_2

$$\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{\substack{e \in \mathcal{E}_{path} \\ \tau(e) = r}} \mathcal{M}_{e}^{r} - \beta \sum_{\substack{e \in \mathcal{E}, e \notin \mathcal{E}_{path} \\ \tau(e) = r}} \mathcal{M}_{e}^{r})$$

• Edges maximize the mutual information.

 $\mathcal{L}_{pred}(\mathcal{M}) = -\log P_{\Phi}(Y = 1 | \mathcal{G} = (\mathcal{V}, \mathcal{E} \odot \sigma(\mathcal{M})), (s, t))$

• Pruning: more informative paths and efficiency.

Experiments

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.
- Human evaluation: 78.79% responses selected our method as the best compared to baselines.

p5670: Using association rules to solve the cold-start problem in recommender systems f3: Data mining f4: Computer science f34: Artificial intelligence f50: Machine learning f4134: Redundancy (engineering) f5674: User profile p22646: A tool for collecting provenance data in social media p25160: Redundancy based feature selection for microarray data p35294: Efficiently handling feature redundancy in high-

Thank you! Q & A

Contact author

Appendix

Experiments: Dataset Generation

Generate datasets new evaluation

 Create a new edge s-t if they are connected by a concise and informative path p

 $\mathcal{P} = \{p | p \text{ is a } s\text{-}t \text{ path with max length } l_{max} \text{ and max node degree } D_{max}\}$

• Use *p* as the ground truth for evaluating the prediction of (*s*, *t*)

Graph schema

Experiments: Visualization

Proposition and Theorems

- Paths form a much smaller search space Proposition 4.1. Let $\mathcal{G}(n,d)$ be a random graph with n nodes and density d, i.e., there are $m = d\binom{n}{2}$ edges chosen uniformly randomly from all node pairs. Let $Z_{n,d}$ be the expected number of paths between any pair of nodes. Let $S_{n,d}$ be the expected number of edge-induced subgraphs. Then $Z_{n,d} = o(S_{n,d})$, i.e., $\lim_{n\to\infty} \frac{Z_{n,d}}{S_{n,d}} = 0$.
- Asymptotic normality of the k-core

Theorem 5.1 (Pittel, Spencer and Wormald [28]). Let $\mathcal{G}(n, d)$ be a random graph with m edges as in Proposition 4.1. Let $\mathcal{G}^k(n, d) =$ $(\mathcal{V}^k(n, d), \mathcal{E}^k(n, d))$ be the nonempty k-core of $\mathcal{G}(n, d)$. Then $\mathcal{G}^k(n, d)$ will contain $\delta_{\mathcal{V}}(n, d, k)n$ nodes and $\delta_{\mathcal{E}}(n, d, k)m$ edges with high probability (w.h.p.) for large n, i.e., $|\mathcal{V}^k(n, d)|/n \xrightarrow{p} \delta_{\mathcal{V}}(n, d, k)$ and $|\mathcal{E}^k(n, d)|/m \xrightarrow{p} \delta_{\mathcal{E}}(n, d, k)$ with \xrightarrow{p} stands for convergence in probability.