

PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction

Shichang Zhang¹, Jiani Zhang², Xiang Song², Soji Adeshina², Da Zheng², Christos Faloutsos^{2,3}, Yizhou Sun^{1,2}

1University of California, Los Angeles (UCLA) 2Amazon 3Carnegie Mellon University

April 2023

Outline

- Problem and Motivation
- Existing Work
- Main Idea
- Experiments

- Many start-of-the-art AI models are black boxes.
- Explainability helps to increase user satisfaction and improve model design.

• Data: often as heterogeneous graphs.

• Data: often as heterogeneous graphs.

UCLA

• Data: often as heterogeneous graphs.

UCLA

4 Zhang, Shichang, et al. "PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction" WWW 2023

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

UCLA

• Data: often as heterogeneous graphs.

UCLA

• Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

4 Zhang, Shichang, et al. "PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction" WWW 2023

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.
- Explanation: Why recommend an item to a user? (Why predict a user-item link?)

• Graph classification: property of a molecule.

• Graph classification: property of a molecule.

- Graph classification: property of a molecule.
	- Explained with general subgraphs.

- Graph classification: property of a molecule.
	- Explained with general subgraphs.

• Explanation: subgraphs for $-NO₂$ motif

- Graph classification: property of a molecule.
	- Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

• Explanation: subgraphs for $-NO₂$ motif

- Graph classification: property of a molecule.
	- Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

• Explanation: subgraphs for $-NO₂$ motif

- Graph classification: property of a molecule.
	- Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

- Explanation: subgraphs for - $NO₂$ motif Explanation: ???
-

- Graph classification: property of a molecule.
	- Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

- Explanation: subgraphs for - $NO₂$ motif Explanation: ???
-

- Graph classification: property of a molecule.
	- Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.
	- An ideal explanation should capture the connection between the source and the target.

- Explanation: subgraphs for - $NO₂$ motif Explanation: ???
-

Zhang, Shichang, et al. "PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction" WWW 2023 6

Zhang, Shichang, et al. "PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction" WWW 2023 6

UCLA

Main Idea: Paths As Explanations

- Natural human-interpretable explanations boil down to paths.
- Paths form a much smaller search space compared to general subgraphs.

- Natural human-interpretable explanations boil down to paths.
- Paths form a much smaller search space compared to general subgraphs.
- Define explanations as *concise* and *informative* paths that are *influential to the prediction*.

• Challenges for finding good paths.

- Challenges for finding good paths.
	- Many path candidates.

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.

• Edges form short paths with low-degree nodes.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
	- Edges form short paths with low-degree nodes.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

$$
\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)
$$

$$
\tau(e)=r \qquad \tau(e)=r
$$

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.

• Edges form short paths with low-degree nodes.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

$$
\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)
$$

• Edges maximize the mutual information.

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
	- Edges form short paths with low-degree nodes.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

$$
\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)
$$

$$
\tau(e)=r \qquad \tau(e)=r
$$

• Edges maximize the mutual information.

 $\mathcal{L}_{pred}(\mathcal{M}) = -\log P_{\Phi}(Y = 1 | \mathcal{G} = (\mathcal{V}, \mathcal{E} \odot \sigma(\mathcal{M})), (s, t))$

- Challenges for finding good paths.
	- Many path candidates.
	- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
	- Edges form short paths with low-degree nodes.

 i_1

 i_4

 $a₂$

 $u_1 \bigvee u_2 \bigvee a_1$

 $u_2 \longrightarrow u_3$

$$
\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)
$$

$$
\tau(e)=r \qquad \tau(e)=r
$$

• Edges maximize the mutual information.

 $\mathcal{L}_{\text{pred}}(\mathcal{M}) = -\log P_{\Phi}(Y = 1 | \mathcal{G} = (\mathcal{V}, \mathcal{E} \odot \sigma(\mathcal{M})), (s, t))$

• Pruning: more informative paths and efficiency.

• ROC-AUC: 9%-35% improvement over baselines.

• ROC-AUC: 9%-35% improvement over baselines.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.
- Human evaluation: 78.79% responses selected our method as the best compared to baselines.

solve the cold-start problem in recommender systems f3: Data mining f4: Computer science *f34: Artificial intelligence f50; Machine learning, :f4134: Redundancy (engineering) 'f5674: 'User profile' p22646: A tool for collecting provenance data in social media p25160: Redundancy based feature selection for microarray data p35294: Efficiently handling feature redundancy in highdimensional data

Thank you! Q & A

Appendix

Experiments: Dataset Generation

Generate datasets new evaluation

• Create a new edge s -t if they are connected by a concise and informative path p

 $\mathcal{P} = \{p|p \text{ is a } s\text{-}t \text{ path with max length } l_{max} \text{ and max node degree } D_{max}\}\$

• Use p as the ground truth for evaluating the prediction of (s, t)

Graph schema

UCLA

Experiments: Visualization

Proposition and Theorems

- Paths form a much smaller search space **Proposition 4.1.** Let $G(n, d)$ be a random graph with n nodes and density d, i.e., there are $m = d{n \choose 2}$ edges chosen uniformly randomly from all node pairs. Let $Z_{n,d}$ be the expected number of paths between any pair of nodes. Let $S_{n,d}$ be the expected number of edge-induced subgraphs. Then $Z_{n,d} = o(S_{n,d})$, i.e., $\lim_{n\to\infty} \frac{Z_{n,d}}{S_{n,d}} = 0$.
- Asymptotic normality of the k-core

Theorem 5.1 (Pittel, Spencer and Wormald [28]). Let $G(n, d)$ be a random graph with m edges as in Proposition 4.1. Let $G^k(n,d)$ = $(\mathcal{V}^k(n,d), \mathcal{E}^k(n,d))$ be the nonempty k-core of $\mathcal{G}(n,d)$. Then $\mathcal{G}^k(n,d)$ will contain $\delta \gamma(n, d, k)$ n nodes and $\delta \varepsilon(n, d, k)$ m edges with high probability (w.h.p.) for large n, i.e., $|\mathcal{V}^k(n,d)|/n \xrightarrow{p} \delta_{\mathcal{V}}(n,d,k)$ and $|\mathcal{E}^{k}(n, d)|/m \xrightarrow{p} \delta_{\mathcal{E}}(n, d, k)$ with \xrightarrow{p} stands for convergence in probability.