

PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction

Shichang Zhang¹, Jiani Zhang², Xiang Song², Soji Adeshina², Da Zheng², Christos Faloutsos^{2,3}, Yizhou Sun^{1,2}

¹University of California, Los Angeles (UCLA) ²Amazon ³Carnegie Mellon University

Outline

- Problem and Motivation
- Existing Work
- Main Idea
- Experiments

- Many start-of-the-art AI models are black boxes.
- Explainability helps to increase user satisfaction and improve model design.

Data: often as heterogeneous graphs.

• Data: often as heterogeneous graphs.

Data: often as heterogeneous graphs.

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.

- Data: often as heterogeneous graphs.
- Model: Graph Neural Networks (GNNs) work well for heterogeneous link prediction.
- Explanation: Why recommend an item to a user? (Why predict a user-item link?)

Graph classification: property of a molecule.

Graph classification: property of a molecule.

- Graph classification: property of a molecule.
 - Explained with general subgraphs.

- Graph classification: property of a molecule.
 - Explained with general subgraphs.

Explanation: subgraphs for -NO₂ motif

- Graph classification: property of a molecule.
 - Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

Explanation: subgraphs for -NO₂ motif

- Graph classification: property of a molecule.
 - Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

Explanation: subgraphs for -NO₂ motif

- Graph classification: property of a molecule.
 - Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

Explanation: subgraphs for -NO₂ motif

• Explanation: ???

- Graph classification: property of a molecule.
 - Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.

• Explanation: subgraphs for $-NO_2$ motif

• Explanation: ???

- Graph classification: property of a molecule.
 - Explained with general subgraphs.
- Heterogeneous link prediction: recommendation.
 - An ideal explanation should capture the connection between the source and the target.

• Explanation: subgraphs for $-NO_2$ motif

• Explanation: ???

Main Idea: Paths As Explanations

- Natural human-interpretable explanations boil down to paths.
- Paths form a much smaller search space compared to general subgraphs.

Main Idea: Paths As Explanations

- Natural human-interpretable explanations boil down to paths.
- Paths form a much smaller search space compared to general subgraphs.
- Define explanations as *concise* and *informative* paths that are *influential to the prediction*.

Challenges for finding good paths.

- Challenges for finding good paths.
 - Many path candidates.

- Challenges for finding good paths.
 - Many path candidates.
 - Criterion for selecting good paths.

- Challenges for finding good paths.
 - Many path candidates.

Learn an edge mask to select meaningful edges.

- Challenges for finding good paths.
 - Many path candidates.
 - Criterion for selecting good paths.

- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

- Challenges for finding good paths.
 - Many path candidates.

- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

$$\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)$$

$$\tau(e) = r$$

$$\tau(e) = r$$

- Challenges for finding good paths.
 - Many path candidates.

- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

$$\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_e^r - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_e^r)$$

$$\tau(e) = r$$

$$\tau(e) = r$$

• Edges maximize the mutual information.

UCLA

PaGE-Link: Path-Enforcing Mask

- Challenges for finding good paths.
 - Many path candidates.

- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

$$\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{\substack{e \in \mathcal{E}_{path} \\ \tau(e) = r}} \mathcal{M}_e^r - \beta \sum_{\substack{e \in \mathcal{E}, e \notin \mathcal{E}_{path} \\ \tau(e) = r}} \mathcal{M}_e^r)$$

Edges maximize the mutual information.

$$\mathcal{L}_{pred}(\mathcal{M}) = -\log P_{\Phi}(Y = 1|\mathcal{G} = (\mathcal{V}, \mathcal{E} \odot \sigma(\mathcal{M})), (s, t))$$

UCLA

PaGE-Link: Path-Enforcing Mask

- Challenges for finding good paths.
 - Many path candidates.

- Criterion for selecting good paths.
- Learn an edge mask to select meaningful edges.
 - Edges form short paths with low-degree nodes.

$$\mathcal{L}_{path}(\mathcal{M}) = -\sum_{r \in \mathcal{R}} (\alpha \sum_{e \in \mathcal{E}_{path}} \mathcal{M}_{e}^{r} - \beta \sum_{e \in \mathcal{E}, e \notin \mathcal{E}_{path}} \mathcal{M}_{e}^{r})$$

$$\tau(e) = r$$

$$\tau(e) = r$$

Edges maximize the mutual information.

$$\mathcal{L}_{pred}(\mathcal{M}) = -\log P_{\Phi}(Y = 1 | \mathcal{G} = (\mathcal{V}, \mathcal{E} \odot \sigma(\mathcal{M})), (s, t))$$

Pruning: more informative paths and efficiency.

ROC-AUC: 9%-35% improvement over baselines.

• ROC-AUC: 9%-35% improvement over baselines.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.

- ROC-AUC: 9%-35% improvement over baselines.
- Concise paths without generic nodes.
- Human evaluation: 78.79% responses selected our method as the best compared to baselines.

Thank you! Q & A

Paper

Code

Contact author

Appendix

Experiments: Dataset Generation

Generate datasets new evaluation

• Create a new edge s-t if they are connected by a concise and informative path p

 $\mathcal{P} = \{p|p \text{ is a } s\text{-}t \text{ path with max length } l_{max} \text{ and max node degree } D_{max}\}$

Use p as the ground truth for evaluating the

prediction of (s, t)

Augmented graph schema

User-item graph

Graph schema

user

item

attr

buys

has

likes

Experiments: Visualization

a2367: Vipin Kumar p16200: Fast and exact network trajectory similarity computation: a case-study on bicycle corridor planning

GNNExp-Link p16200 p25293 p32209 p40531

a5868: Pang-Ning Tan f3: Data mining f34: Artificial intelligence p25293: Selecting the right interestingness measure for association patterns p32209: Generalizing the notion of support p40531: Tripoles: A New Class of Relationships in Time Series Data

PGExp-Link f34 p16200 p40341 in f40348

f34: Artificial intelligence f50: Machine learning f40348: Environmental change p40341: Incremental Dual-memory LSTM in Land Cover Prediction

a5720: Shashi Shekhar p5717: Correlation analysis of spatial time series datasets: a filter-and-refine approach

Proposition and Theorems

Paths form a much smaller search space

Proposition 4.1. Let G(n,d) be a random graph with n nodes and density d, i.e., there are $m = d\binom{n}{2}$ edges chosen uniformly randomly from all node pairs. Let $Z_{n,d}$ be the expected number of paths between any pair of nodes. Let $S_{n,d}$ be the expected number of edge-induced subgraphs. Then $Z_{n,d} = o(S_{n,d})$, i.e., $\lim_{n\to\infty} \frac{Z_{n,d}}{S_{n,d}} = 0$.

Asymptotic normality of the k-core

Theorem 5.1 (Pittel, Spencer and Wormald [28]). Let $\mathcal{G}(n,d)$ be a random graph with m edges as in Proposition 4.1. Let $\mathcal{G}^k(n,d) = (\mathcal{V}^k(n,d),\mathcal{E}^k(n,d))$ be the nonempty k-core of $\mathcal{G}(n,d)$. Then $\mathcal{G}^k(n,d)$ will contain $\delta_{\mathcal{V}}(n,d,k)n$ nodes and $\delta_{\mathcal{E}}(n,d,k)m$ edges with high probability (w.h.p.) for large n, i.e., $|\mathcal{V}^k(n,d)|/n \xrightarrow{p} \delta_{\mathcal{V}}(n,d,k)$ and $|\mathcal{E}^k(n,d)|/m \xrightarrow{p} \delta_{\mathcal{E}}(n,d,k)$ with \xrightarrow{p} stands for convergence in probability.