GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games

Shichang Zhang¹, Yozen Liu², Neil Shah², Yizhou Sun¹

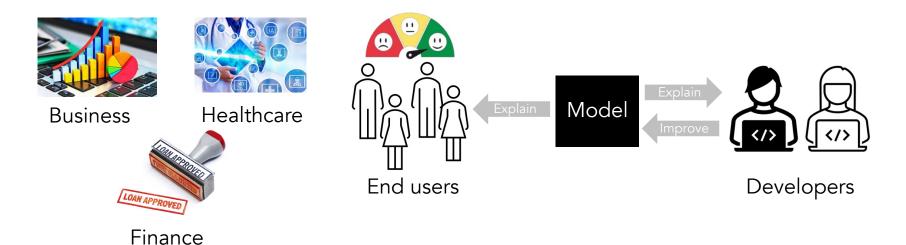
¹University of California, Los Angeles (UCLA) ²Snap Inc.

Feb 2023

Explainable Artificial Intelligence (XAI)

Many of the AI models are neural-network-based black-box

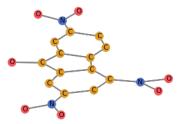
- Explainability is critical for AI models
- Explainability helps to increase user trust and improve model design



Learning on Graphs

Graphs are a general language for modeling entities with relations

E-commerce graphs



Molecule graphs

"is still quite good – natured and not a bad way to spend an hour"

is still quite - good natured and bad not a spend way to hour an Text graphs

Transportation graphs, code graphs, and many more ...

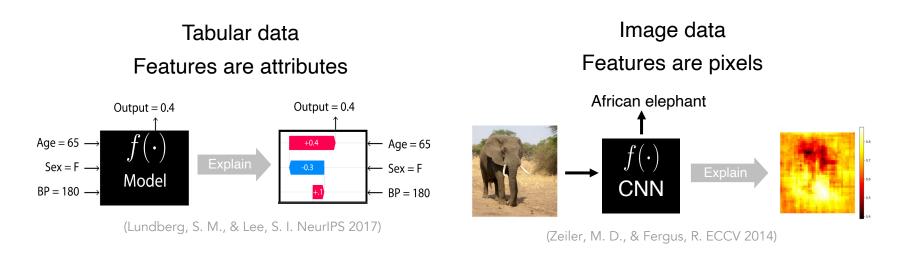
Graph learning tasks

- Classify molecular properties
- Classify sentence sentiment

Graph Neural Networks (GNNs) are the SOTA model

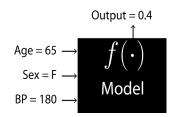
Model Explanation

Given a trained black-box model, identify important features for a model prediction



Model Explanation as Feature Importance Scoring

	Model explanation (multi-class classification)
$\{x_1,\ldots,x_n\}$	Features
$f(\cdot): \boldsymbol{x_S} \to \mathbb{R} ext{ for}$ $\boldsymbol{x_S} \subseteq \{\boldsymbol{x_1}, \dots, \boldsymbol{x_n}\}$	A model. Outputs the predicted probability (of the most likely class) for a set of features
$\mathrm{SCORE}(f(\cdot),i)$	What is a proper importance score for each feature?



• Contribution of the target feature as its importance score $SCORE(f(\cdot), i) := f(\{x_i\}) - f(\emptyset)$

A simple idea ignores interactions between features

Model Explanation as Feature Importance Scoring

	Model explanation (multi-class classification)	Cooperative game	x_i (1) (2) (3)
$\{x_1,\ldots,x_n\}$	Features	Players	
$f(\cdot): \boldsymbol{x_S} \to \mathbb{R} ext{ for } $ $\boldsymbol{x_S} \subseteq \{\boldsymbol{x_1}, \dots, \boldsymbol{x_n}\}$	A model. Outputs the predicted probability (of the most likely class) for a set of features	A payoff function. Outputs the payoff for a set of players	Shapley Marginal Contributions weights $oldsymbol{x}_S \cup \{oldsymbol{x}_i\}$ $oldsymbol{x}_S$
$\operatorname{SCORE}(f(\cdot),i)$	What is a proper importance score for each feature?	What is a fair payoff to each player?	1/3 1 - 1
	ma theory a g Shaploy	voluo	

- Cooperative game theory, e.g., Shapley value
 - A weighted aggregation of marginal contributions m(i, S)

$$m(i,S) := f(\boldsymbol{x}_{S} \cup \{\boldsymbol{x}_{i}\}) - f(\boldsymbol{x}_{S})$$

$$\operatorname{Score}(f(\cdot),i) := \left| \begin{array}{c} \overbrace{1}^{\operatorname{Average over } k} \operatorname{Average over } S \text{ s.t. } |S| = k \\ \overbrace{1}^{n-1} \sum_{k=0}^{n-1} \overbrace{1}^{\binom{n-1}{k}} \sum_{\substack{S \subseteq N \setminus \{i\} \\ |S| = k}} \\ m(i,S) \end{array} \right|$$

(3)

3)

(2)

(3)

L1/6

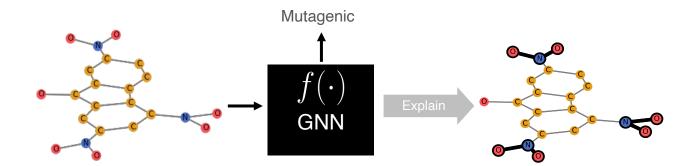
1/3

GNN Explanation on Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Feature importance scoring on graphs

- Nodes as features (like tabular attributes or image pixels as features)
- The graph structure between nodes contains important information

Find an optimal subgraph (set of nodes and the structure between them)



Feature Importance Scoring for GNNs on Graphs

- Feature contribution $SCORE(f(\cdot), i) := f(\{x_i\}) f(\emptyset)$
- Shapley value

$$m(i,S) := f(\boldsymbol{x_S} \cup \{\boldsymbol{x_i}\}) - f(\boldsymbol{x_S})$$

$$\operatorname{SCORE}(f(\cdot), i) := \underbrace{\frac{1}{n} \sum_{k=0}^{n-1}}_{k=0} \operatorname{Average over} S \text{ s.t. } |S| = k}_{\substack{|S| = k}} m(i, S)$$

Both score functions are not structure aware

$$SCORE(f(\cdot), \mathcal{G}, i) := ?$$

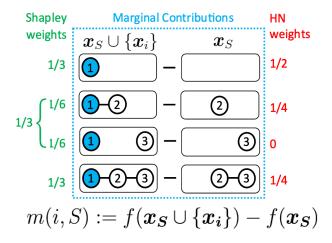
(3) $x_i = (1)$ (2)**Marginal Contributions** Shapley weights $oldsymbol{x}_S \cup \{oldsymbol{x}_i\}$ x_S 1/3 (2) 1/6 (2) 1/3 (3) (3) (2) (3) (2)(3) 1/3

HN value: A Structure-aware Game Theory Value

A structure-aware HN value

 $\operatorname{SCORE}(f(\cdot), \boldsymbol{\mathcal{G}}, i) := \lim_{t \to \infty} f_{\tau}^t(\{\boldsymbol{x_i}\})$

HN equals to Shapley for complete graphs



HN value: A Structure-aware Game Theory Value

A structure-aware HN value

 $\operatorname{SCORE}(f(\cdot), \mathcal{G}, i) := \lim_{t \to \infty} f_{\tau}^t(\{\boldsymbol{x}_i\})$ $f_{\tau}^t(\cdot)$ is computed recursively over $m{x}_{m{S}}$

• Base case

$$f_{\tau}^t(\boldsymbol{x_S}) = f(\boldsymbol{x_S})$$
 when $t = 0$

Recursive case

$$f_{\tau}^{t}(\boldsymbol{x}_{S}) = f_{\tau}^{t-1}(\boldsymbol{x}_{S}) + \tau \sum_{j \in \mathcal{N}(\boldsymbol{x}_{S})} p^{t-1}(j,S)$$

Cooperation surplus

$$p^{t}(j,S) := f^{t}(\boldsymbol{x_{S}} \cup \{\boldsymbol{x_{j}}\}) - f^{t}(\boldsymbol{x_{S}}) - f^{t}(\{\boldsymbol{x_{j}}\})$$

• Hyperparameter τ in [0,1]

 $p^{1}(4, \{1\})$ $p^1(2, \{1\})$ $p^1(3, \{1\})$ $f_{\tau}^{2}(\{1\}) = f_{\tau}^{1}(\{1\}) + \tau \quad \sum \quad p^{1}(j,\{1\})$ $j \in \overline{\{2,3,4\}}$ $p^{1}(4,\{1\}) = f_{\tau}^{1}(\{1,4\}) - f_{\tau}^{1}(\{1\}) - f_{\tau}^{1}(\{4\})$ $p^{0}(6, \{1, 4\})$ $p^0(5, \{1, 4\})$ $p^{0}(2, \{1, 4\}) p^{0}(3, \{1, 4\})$ $f_{\tau}^{1}(\{1,4\}) = f_{\tau}^{0}(\{1,4\}) + \tau \qquad \sum \quad p^{0}(j,\{1,4\})$ $i \in \{2, 3, 5, 6\}$ 10

Experiments: Quantitative Evaluation

Task: Graph classification (top) and node classification (bottom)

GStarX outperforms other baselines in terms of Harmonic fidelity

Dataset	GNNExplainer	PGExplainer	SubgraphX	GraphSVX	OrphicX	GStarX
Synthetic BA2Motifs	s 0.4841	0.4879	0.6050	0.5017	0.5087	0.5824
BACE	0.5016	0.5127	0.5519	0.5067	0.4960	0.5934
	0.4735	0.4750	0.5610	0.5345	0.4893	0.5227
Text GraphSST2	2 0.4845	0.5196	0.5487	0.5053	0.4924	0.5519
MUTAG	0.4745	0.4714	0.5253	0.5211	0.4925	0.6171
Twitter	0.4838	0.4938	0.5494	0.4989	0.4944	0.5716
Average	0.4837	0.4934	0.5569	0.5114	0.4952	0.5732
Dataset	GNNExplainer	PGExplainer	SubgraphX	GraphSVX	OrphicX	GStarX
Synthetic	0.4772	0.5042	0.6050	0.4916	0.5081	0.5321
						'

Summary

- Solving an important model explanation problem on graphs
- Model explanation can be formulated as feature importance scoring
- Existing importance scoring functions are not structure aware
- Our approach:
 - A structure-aware importance scoring function based-on the HN value
- Our result:
 - Explanations with better fidelity and more intuitive visualizations

Thank you! Q & A

Contact author

