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Explainable Artificial Intelligence (XAl)

Many of the Al models are neural-network-based black-box
* Explainability is critical for Al models

 Explainability helps to increase user trust and improve model design
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Learning on Graphs

Graphs are a general language for modeling entities with relations
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Molecule graphs
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Text graphs

Transportation graphs, code graphs,
and many more ...

Graph learning tasks
* Classify molecular properties
« Classify sentence sentiment

Graph Neural Networks (GNNs) are
the SOTA model



Model Explanation

Given a trained black-box model, identify important features for a model prediction

Tabular data Image data
Features are attributes Features are pixels
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Model Explanation as Feature Importance Scoring

Model explanation
(multi-class classification)

{ey,...,x,} Features

f(): zs — R for A model. Outputs the predicted
probability (of the most likely
xs C{w1, ... Tn} class) for a set of features

What is a proper importance
score for each feature?

SCORE(f(-), 1)

« Contribution of the target feature as its importance score

SCORE(f(+),i) := f({z:}) — (D)

A simple idea ignores interactions between features
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Model Explanation as Feature Importance Scoring

Model explanation Cooperative game @y ot
(multi-class classification) ’ ) . @ @
{xy,..., 2.} Features Players © |- |
D) xe — R for Amodel. Outputs the predicted A payoff function. . _—
f): s probability (of the most likely Outputs the payoff Shapley ............ '.\.’!‘?.'.r%'.'?f*.!E.‘?.’?.t.'r.!'.‘?f‘.f‘?.‘?.'.‘.s..........E
rs C{x1,..., T} class) for a set of features for a set of players welghts  Ts Uiz} Ts
SCORE(f(-) 2) What is a proper importance What is a fair payoff s [. ] - ]
’ score for each feature? to each player?
- s @@ J-[ @ |
» Cooperative game theory, e.g., Shapley value e ] ;[‘ @J . ®]§
. . . . . . 1/6 : - :
« A weighted aggregation of marginal contributions m(z, S)
m(i.) = f(zs U {i}) - f(@s » 000~ 00
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SCORE(f(+), 1) :% Ly (i, s)




GNN Explanation on Graph G = (V, )

Feature importance scoring on graphs
* Nodes as features (like tabular attributes or image pixels as features)
» The graph structure between nodes contains important information

Find an optimal subgraph (set of nodes and the structure between them)

Mutagenic




Feature Importance Scoring for GNNs on Graphs

« Feature contribution SCORE(f(-),7) := f({x;}) — f(0)

» Shapley value
m(i,S) = f(xs U{z:i}) — f(xs)

Average over k

A Average over S s.t. |S| =k

n—1 r ~
scom(f() = LY X ms)
k=0 k S%Tf:\i@}

Both score functions are not structure aware
SCORE(f(+),G,i) .= 7

Shapley
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HN value: A Structure-aware Game Theory Value

A structure-aware HN value
SCORB(f().G.1) = lim f({a:})

HN equals to Shapley for complete graphs

Shapley Marginal Contributions HN




HN value: A Structure-aware Game Theory Value

A structure-aware HN value @ () @
SCORE(f(+),G,1) := lim fi({x}) pl(4,{1})
fL(*) is computed recursively over s 2 3

pH2A1) P (3. {1})

- Base case ) . »
() = f(zs) when { = 0 fF{1}) = f({1}) +Tj€§;’4}p (7, {1}
« Recursive case p'(4,{1}) = fr({1,4}) = fr({1}) — f7({4})
fr@s)=fi ) +7 Y p7H.S) o
LJ;E-N-(?-S-)J P64 4D T p°(5,{1,4})
» Cooperation surplus
PG, S) = s U {a)) — fis) — 1G] O=@=C
* Hyperparameter 7 in [0,1] ALy =LAy +r Y 6. {14}
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Experiments: Quantitative Evaluation

Task: Graph classification (top) and node classification (bottom)
GStarX outperforms other baselines in terms of Harmonic fidelity

_______

Dataset GNNExplainer ~PGExplainer SubgraphX GraphSVX  OrphicX | GStarX

Synthetic — BA2Motifs 0.4841 0.4879 0.6050 0.5017 0.5087 : 0.5824
Molecul BACE 0.5016 0.5127 0.5519 0.5067 0.4960 | 0.5934
olecuie 6 BBBP 0.4735 0.4750 0.5610 0.5345 0.4893 ! 0.5227
< GraphSST2  0.4845 0.5196 0.5487 0.5053 0.4924 ! 0.5519

MUTAG 0.4745 04714 0.5253 0.5211 0.4925 ! 0.6171

Twitter 0.4838 0.4938 0.5494 0.4989 0.4944 ' 0.5716

Average 0.4837 0.4934 0.5569 0.5114 0.4952 i 0.5732

Dataset GNNExplainer PGExplainer SubgraphX  GraphSVX  OrphicX E GStarX

Synthetic ——> BAShape 0.4772 0.5042 0.6050 0.4916 0.5081 E 0.5321



Summary

Solving an important model explanation problem on graphs

Model explanation can be formulated as feature importance scoring

Existing importance scoring functions are not structure aware

Our approach:
A structure-aware importance scoring function based-on the HN value

Our result:
« Explanations with better fidelity and more intuitive visualizations
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