Recent Progress in Explaining GNNs

Shichang Zhang

Nov 2022

Roadmap

- Introduction
 - Model Explanation
 - GNN Explanation
- Recent progress
 - Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 2021)
 - Task-Agnostic Graph Explanations (NeurIPS 2022)

See Shichang Zhang's slides for a paper reading group in Fall 2021 for a more detailed review https://drive.google.com/file/d/1gQMmQJQdplT5p0kBEwlYc6lSVdiEKfjT/view?usp=sharing

Model Explanation

- Identify importance features for a prediction made by a black-box model
- Improve model transparency and increase user trust

GNN Explanation

- Identify important (edge/node-induced) subgraphs for the GNN prediction
- Challenge
 - Discrete graph structure prevents gradient-based methods for CNNs to generalize to GNNs
- Explain via mask learning (GNNExplainer (Ying, et al. NeurIPS 2019))
 - Parameterize a mask over all edges and get a masked subgraph or an edge-induced subgraph $G = (\mathcal{V}, \mathcal{E}) \qquad M \in \mathbb{R}^{|\mathcal{E}|} \longrightarrow \mathcal{E}_S = \mathcal{E} \odot \sigma(M) \longrightarrow G_S = (\mathcal{V}_S, \mathcal{E}_S)$
 - Learn the mask by maximizing the mutual information, which equivalently minimizes the negative probability for the masked graph to make the same prediction as the whole graph

$$\max_{G_S \subseteq G} MI(Y, G_S) = \min_M \mathcal{L}_{pred}(M)$$

$$\mathcal{L}_{pred}(M) = -\log P_{\Phi}(Y|\mathcal{E}_S = \mathcal{E} \odot \sigma(M))$$

Towards Multi-Grained Explainability for Graph Neural Networks

Xiang Wang^{§†‡}, Ying-Xin Wu[§], An Zhang[†], Xiangnan He[§]; Tat-Seng Chua[†] [‡]Sea-NExT Joint Lab [†]National University of Singapore [§]University of Science and Technology of China xiangwang@u.nus.edu, wuyxin@mail.ustc.edu.cn, an_zhang@nus.edu.sg xiangnanhe@gmail.com, dcscts@nus.edu.sg

General Comments

- The question that the paper asks is enlightening
- Whether the proposed approach is the best is questionable
- Some fancy terms that look complicated, but they are not deep

Local Explainability vs. Global Explainability

- Local explainability
 - Why the GNN model made the certain prediction for the instance at hand?
- Global explainability
 - What class-wise knowledge does the GNN leverage to make predictions in general?

A map of patterns to predictions will be a good global explanation

ReFine: Pre-training + Fine-tuning

- Graph \mathcal{G} , GNN f, predicted class c, budget ρ
- Saliency map (mask) $\mathbf{M} \in \mathbb{R}^{|\mathcal{V}| imes |\mathcal{V}|}$ $\mathbf{M} = \mathcal{T}(\mathcal{G}, f, c)$
- Attentive graph (masked graph) $\mathcal{G}_{att} = \mathbf{A} \odot \mathbf{M}$
- Explanatory subgraph $\mathcal{G}_{exp} = \mathbf{A} \odot \mathbf{S}$ $\mathbf{S} = \mathcal{H}(\mathcal{G}_{att}, f, c, \rho)$

ReFine: Pre-training

$$\mathbf{M} = \mathcal{T}(\mathcal{G}, f, c)$$

 $\mathcal{T}_{ heta} = \{\mathcal{T}^{(c)} | c = 1, \cdots, C\}$

An attribution module for each class

Node representations + MLP + reparameterization

 $\mathbf{Z} = \text{GNN}(\mathcal{G}, \mathbf{X}) \quad \alpha_{ij} = \text{MLP}([\mathbf{z}_i, \mathbf{z}_j])$

$$\epsilon \sim \text{Uniform}(0,1) \quad P(M_{ij}|\mathbf{z}_i, \mathbf{z}_j) = \sigma((\log \frac{\epsilon}{1-\epsilon} + \alpha_{ij})/\beta)$$
$$\mathcal{L}_1 = -\mathbb{E}_{\mathcal{G}} \mathbb{E}_{\epsilon} \mathbb{E}_{c'} [P(Y = c'|G = \mathcal{G}) \log P(Y = c'|G = \mathcal{G}_{att}^{(c)})]$$

ReFine: Pre-training

$$\mathbf{M} = \mathcal{T}(\mathcal{G}, f, c)$$

 $\mathcal{T}_{ heta} = \{\mathcal{T}^{(c)} | c = 1, \cdots, C\}$

An attribution module for each class

• Similarity maximization/minimization

$$\ell(\mathcal{G}_{att1}^{(c_1)},\mathcal{G}_{att2}^{(c_2)}) = \mathbf{h}_1^{ op} \mathbf{h}_2$$

$$\mu(x) = \log(1 + \exp(x))$$
: the softplus function

$$\mathcal{L}_{cts} = \mathbb{E}_{\mathcal{G},\mathcal{G}'} \mathbb{E}_{\epsilon,\epsilon'} [(-1)^{\mathbb{I}(c_1=c_2)} \times \mu(\ell(\mathcal{G}_{att1}^{(c_1)},\mathcal{G}_{att2}^{(c_2)}))]$$

A continuous approximation of ReLU

ReFine: Fine-tuning

$$\theta'_{0} = \theta$$
$$\min_{\theta'} \mathcal{L}_{2} = MI(Y, G_{exp})$$
where $G_{exp} = \mathbf{Top}_{\rho}(G_{att})$ User-defined ratio

$$\mathbf{S} = \mathcal{H}(\mathcal{G}_{att}, f, c, \rho)$$

A selection module

• The same loss as pre-training, but on the explanatory graph

$$\mathcal{L}_2 = -\mathbb{E}_{\mathcal{G}}\mathbb{E}_{\epsilon}\mathbb{E}_{c'}[P(Y = c'|G = \mathcal{G})\log P(Y = c'|G = \mathcal{G}_{exp}^{(c)})]$$

The pre-training loss

$$\mathcal{L}_1 = -\mathbb{E}_{\mathcal{G}}\mathbb{E}_{\epsilon}\mathbb{E}_{c'}[P(Y = c'|G = \mathcal{G})\log P(Y = c'|G = \mathcal{G}_{att}^{(c)})]$$

- Is global explain (pre-training) + local explain (fine-tuning) effective?
- ACC-AUC: accuracy with different budget ρ , and then compute AUC

		Pre-training				ing
	Class-wise	Attributors	Contrastive Lear	ning		
PG-Explaine	r -	-	-		-	
Refine-CT	•		-		-	
Refine-FT	•		 ✓ 		-	
Refine	•	 Image: A second s		V V		
	Mutagenicity	VG-5	MNIST		BA-3	motif
	ACC-AUC	ACC-AUC	ACC-AUC	AC	C-AUC	Recall@5
SA GNNExplainer PG-Explainer PGM-Explainer	$\begin{array}{c} 0.769 \\ 0.895 {\pm} 0.010 \\ 0.631 {\pm} 0.008 \\ 0.714 {\pm} 0.007 \end{array}$	$\begin{array}{c} 0.769 \\ 0.895 {\pm} 0.003 \\ 0.790 {\pm} 0.004 \\ 0.792 {\pm} 0.001 \end{array}$	$\begin{array}{c} 0.559\\ 0.535{\pm}0.013\\ 0.504{\pm}0.010\\ 0.615{\pm}0.003\end{array}$	(0.52 0.58 0.57	0.518 8 ± 0.005 6 ± 0.004 5 ± 0.002	$\begin{array}{c} 0.243\\ 0.157{\pm}0.002\\ 0.293{\pm}0.001\\ 0.250{\pm}0.000\end{array}$
ReFine-CT ReFine-FT ReFine	0.888±0.008 0.945±0.011 0.955 ±0.005	$\begin{array}{c} 0.891 {\pm} 0.002 \\ 0.906 {\pm} 0.002 \\ \textbf{0.914} {\pm} 0.001 \end{array}$	2 0.526±0.007 2 0.587±0.008 0.636±0.003	0.61 0.61 0.63	$0\pm 0.004 \\ 6\pm 0.003 \\ 0\pm 0.006$	$\begin{array}{c} 0.248 {\pm} 0.001 \\ 0.299 {\pm} 0.002 \\ \textbf{0.304} {\pm} 0.000 \end{array}$
Relative Impro.	6.7%	2.1%	3.4%	,	7.5%	3.8%

It will be more interesting if class patterns can be discovered and visualized.

Task-Agnostic Graph Explanations

Yaochen Xie* Texas A&M University College Station, TX ethanycx@tamu.edu Sumeet Katariya Amazon Search Palo Alto, CA katsumee@amazon.com

Xianfeng Tang Amazon Search Palo Alto, CA xianft@amazon.com

Edward Huang

Amazon Search Palo Alto, CA ewhuang@amazon.com Nikhil Rao Amazon Search Palo Alto, CA nikhilsr@amazon.com Karthik Subbian Amazon Search Palo Alto, CA ksubbian@amazon.com

Shuiwang Ji Texas A&M University College Station, TX sji@tamu.edu

General Comments

- Their approach is enlightening
- Whether the task is the most useful is questionable

Motivation

- A single explainer for multiple tasks
- Maximize explanation efficiently in a multitask setting

Task-Agnostic GNN Explainer (TAGE)

- Embedding explainer $\mathcal{T}_{\mathcal{E}}: \mathbb{R}^d \times \mathcal{G} \rightarrow \mathcal{G}$
- Downstream explainer $\mathcal{T}_{down}: \mathscr{D} \times \mathbb{R}^d \to \mathbb{R}^d$

Task-Agnostic GNN Explainer (TAGE)

- Embedding explainer $\mathcal{T}_{\mathcal{E}}: \mathbb{R}^d \times \mathcal{G} \rightarrow \mathcal{G}$
- Downstream explainer $\mathcal{T}_{down}:\mathscr{D} imes \mathbb{R}^d
 ightarrow \mathbb{R}^d$

Training The Embedding Explainer

• The embedding explainer is independent of the downstream task and can be trained in a self-supervised manner

$$\mathcal{T}_{\mathcal{E}}: \mathbb{R}^d imes \mathcal{G} o \mathcal{G}$$

Condition vector draw from a Laplace distribution $oldsymbol{p} \in \mathbb{R}^d$

Maximize condition-vector-masked mutual information

$$\max_{\theta} \mathrm{E}_{\boldsymbol{p}}[\mathbf{MI}(\boldsymbol{p} \otimes \mathcal{E}(G), \boldsymbol{p} \otimes \mathcal{E}(\mathcal{T}_{\theta}(\boldsymbol{p}, G)))]$$

The Embedding Explainer Architecture

- An MLP that computes a mask weight for each edge
- Add the target node embedding for node classification

The Downstream Explainer

 $\mathcal{T}_{down}: \mathscr{D} \times \mathbb{R}^d \to \mathbb{R}^d$

• A standard gradient-based approach

$$\boldsymbol{g} = \frac{\partial \max_{c \leq C} \mathcal{D}(\boldsymbol{z})[c]}{\partial \boldsymbol{z}} \in \mathbb{R}^{1 \times d} \qquad \text{probabilities } \mathcal{D}(\boldsymbol{z}) \in [0, 1]^C \text{ among all } C \text{ classes}$$

Normalize gradients to get the condition vector

 $\boldsymbol{p} = \operatorname{ReLU}(\operatorname{norm}(\boldsymbol{g}^T))$

• Does TAGE explanations have high fidelity?

,

	זמס					
	HIV	BBBP	BACE	Sider	Total	FFI
# of Graphs	41127	2039	1513	1427	_	24
Avg. # of Nodes	25.53	24.05	34.12	33.64	_	56,944
Avg. # of Edges	27.48	25.94	36.89	35.36	_	818,716
# of Tasks	1	1	1	27	227	121

$$\begin{aligned} Fidelity \ ^{prob} &= \frac{1}{N} \sum_{i=1}^{N} \left[f(G_i)_{c_i} - f(G_i^{1-\boldsymbol{m}_i})_{c_i} \right] \\ Sparsity \ &= \frac{1}{N} \sum_{i=1}^{N} |\boldsymbol{m}_i| / |V_i|, \end{aligned}$$

• Multi-task generalization comparison

		TAGE			
Eval on	BACE	HIV	BBBP	SIDER	w/o downstream
BACE	0.252 ± 0.340	0.007 ±0.251	0.026 ± 0.022	-0.151 ±0.330	0.378 ±0.293
HIV	-0.001 ±0.197	0.473 ±0.404	0.013 ±0.029	-0.060 ±0.356	0.595 ±0.321
BBBP	0.001 ±0.237	-0.056 ±0.226	0.182 ±0.169	-0.252 ± 0.440	0.193 ±0.161
SIDER	0.012 ±0.219	-0.009 ±0.212	0.003 ±0.029	0.444 ±0.391	0.521 ± 0.278

Tables contain fidelity scores at the same sparsity level

	PGExplainer (trained on)					
Eval on	Task 0	Task 1	Task 2	Task 3	Task 4	w/o downstream
Task 0	0.184 ±0.3443	-0.005 ±0.268	0.033 ± 0.335	0.034 ± 0.310	0.018 ±0.194	0.271 ±0.385
Task 1	0.046 ±0.447	0.197 ±0.380	0.043 ± 0.314	0.008 ± 0.297	0.021 ±0.183	0.300 ±0.415
Task 2	0.028 ± 0.434	0.001 ± 0.283	0.345 ± 0.458	0.024 ± 0.320	0.097 ±0.320	0.499 ±0.480
Task 3	0.075 ± 0.364	-0.015 ±0.219	0.036 ± 0.317	0.262 ± 0.418	0.040 ± 0.221	0.289 ±0.427
Task 4	0.035 ±0.413	-0.021 ±0.238	0.223 ± 0.438	0.075 ± 0.374	0.242 ±0.373	0.330 ± 0.442

• Does it achieve efficient multi-task explanation?

Table 5: Comparison of computational time cost among three learning-based GNN explainers on the PPI dataset. The left two columns record time cost breakdown for T downstream tasks. The fourth column estimates the total time cost for explaining all 121 tasks of PPI. The last row shows the speedup times compared to GNNExplainer and PGExplainer, respectively.

Time cost	Training (s)	Inference (s)	Total time (T=1) (s)	Est. total for 121 tasks
GNNExplainer	20040.1*T	_	20040.1	28 d
PGExplainer	7117.0*T	427.2*T	7604.2	10.7 d
TAGE	1405.3	582.7*T	1988.0	0.83 d
Speedup	14.3* $T \times$ / 5.1* $T \times$	-/0.73×	10.1 imes / $3.8 imes$	33.7× / 12.9×

How practical is the multi-task setting?

Q & A

Reference

- Wang, X., Wu, Y., Zhang, A., He, X., & Chua, T. S. (2021). Towards multi-grained explainability for graph neural networks. *Advances in Neural Information Processing Systems*, *34*, 18446-18458.
- Xie, Y., Katariya, S., Tang, X., Huang, E., Rao, N., Subbian, K., & Ji, S. (2022). Task-Agnostic Graph Explanations. *arXiv preprint arXiv:2202.08335*.