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Roadmap

• Introduction 
• Model Explanation
• GNN Explanation

• Recent progress
• Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 2021)
• Task-Agnostic Graph Explanations (NeurIPS 2022)

See Shichang Zhang’s slides for a paper reading group in Fall 2021 for a more detailed review 
https://drive.google.com/file/d/1gQMmQJQdplT5p0kBEwlYc6lSVdiEKfjT/view?usp=sharing



Model Explanation

Explain

(Lundberg, S. M., & Lee, S. I. NeurIPS 2017)

CNN

African elephant
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(Zeiler, M. D., & Fergus, R. ECCV 2014)
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“is still quite good – natured and not a bad way to spend an hour”

“the title 's lameness should clue you in on how bad the movie is.”
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• Identify importance features for a prediction made by a black-box model
• Improve model transparency and increase user trust



GNN Explanation

• Identify important (edge/node-induced) subgraphs for the GNN prediction
• Challenge

• Discrete graph structure prevents gradient-based methods for CNNs to generalize to GNNs

• Explain via mask learning (GNNExplainer (Ying, et al. NeurIPS 2019))
• Parameterize a mask over all edges and get a masked subgraph or an edge-induced subgraph

• Learn the mask by maximizing the mutual information, which equivalently minimizes the 
negative probability for the masked graph to make the same prediction as the whole graph 





General Comments

• The question that the paper asks is enlightening
• Whether the proposed approach is the best is questionable
• Some fancy terms that look complicated, but they are not deep



Local Explainability vs. Global Explainability

• Local explainability
• Why the GNN model made the certain prediction for the instance at hand?

• Global explainability
• What class-wise knowledge does the GNN leverage to make predictions in 

general?

Explain

GNN

Mutagenic A map of patterns to predictions 
will be a good global explanation



ReFine: Pre-training + Fine-tuning

• Graph 𝒢, GNN 𝑓, predicted class 𝑐, budget 𝜌

• Attentive graph (masked graph)

• Explanatory subgraph

• Saliency map (mask)



ReFine: Pre-training

• Node representations + MLP + reparameterization

An attribution module for each class



ReFine: Pre-training

• Similarity maximization/minimization

An attribution module for each class

𝜇 𝑥 = log(1 + exp 𝑥 ): the softplus function

A continuous approximation of ReLU



ReFine: Fine-tuning

• The same loss as pre-training, but on the explanatory graph

The pre-training loss

A selection module 



Experimental Results

• Is global explain (pre-training) + local explain (fine-tuning) effective?
• ACC-AUC: accuracy with different budget 𝜌, and then compute AUC

It will be more interesting if class 
patterns can be discovered and 
visualized.





General Comments

• Their approach is enlightening
• Whether the task is the most useful is questionable



Motivation

• A single explainer for multiple tasks
• Maximize explanation efficiently in a multitask setting



Task-Agnostic GNN Explainer (TAGE)

• Embedding explainer
• Downstream explainer



Task-Agnostic GNN Explainer (TAGE)

• Embedding explainer
• Downstream explainer



Training The Embedding Explainer

• The embedding explainer is independent of the downstream task and 
can be trained in a self-supervised manner

Maximize condition-vector–masked mutual information

Condition vector draw from a Laplace distribution 



The Embedding Explainer Architecture

• An MLP that computes a mask weight for each edge
• Add the target node embedding for node classification



The Downstream Explainer

• A standard gradient-based approach

• Normalize gradients to get the condition vector



Experimental Results

• Does TAGE explanations have high fidelity?



Experimental Results

• Multi-task generalization comparison

Tables contain fidelity scores at the same sparsity level



Experimental Results

• Does it achieve efficient multi-task explanation?

How practical is the multi-task setting?



Q & A
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