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Roadmap

• The Lottery Ticket Hypothesis (LTH)
• The pruning problem
• The original LTH
• Linear mode connectivity and instability analysis (helps the LTH to scale up)
• Early-bird tickets (helps the LTH to become more practical)

• LTH and Graphs
• A Unified Lottery Ticket Hypothesis for Graph Neural Networks (ICML 2021)
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The Pruning Problem

• Such small (sparse) NNs can’t be trained in isolation to achieve 
performance matching the full NN
• Representing the learned knowledge doesn’t require large capacity,

but the learning process does
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Finding The Winning Tickets

• Iterative magnitude pruning (IMP) • Hypothesis
• Training includes initialization and

optimization
• The initialization step is a lottery
• A lucky subnetwork will be

selected and driving the
optimization process, which can be 
trained in isolation to achieve 
performance matching the full NN
• One initialization maps to one set 

of winning tickets
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Extensive Experiments to Support the LTH

• Different architectures
• LeNet, ResNet-18, and VGG

• Different datasets
• MNIST, CIFAR-10

CIFAR-10
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Summary

• Contributions
• Propose the Lottery Ticket Hypothesis, which shows that retraining the

pruned NN is possible
• Verified the hypothesis with extensive experiments

• Limitations
• Experiment scale is still relatively small

• Later on, people found that the IMP strategy fails on ImageNet with large NNs
• IMP requires expensive iterative training

• Making LTH more of an analysis tool rather than a practical pruning method
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Can LTH Scales Up?

Yes. If we go back to somewhere close to the beginning, but not the
initial state for retraining.

ICML 2020
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Instability Analysis for LTH

• Linear connectivity correlates with winning tickets
• Hypothesis: Instability is a problem for sparse NNs but not dense NNs,

sparse NNs get stuck in local optimum
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Rewind to Iteration k 

LTH works again

Wk
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Summary

• Propose the instability analysis, which can be used to study NN
optimization dynamics
• The LTH
• Others optimization modules, e.g. the learning rate scheduler

• Solved one limitation of the original LTH
• Sparse IMP subnetworks can be trained to full accuracy when they find the 

linearly connected iteration
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Can LTH Become More Practical?

Yes. We don’t need full training to find the winning tickets

ICLR 2020
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Finding The Winning Tickets More Efficiently

Early-bird (EB)

training

IMP

Full training

• Do EB tickets exist?
• How to find EB tickets?
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LTH vs. Iteration k Rewinding vs. EB

Early-bird (EB)
tickets

Original LTH

Iteration k
rewinding

0 T

k T

0 EB
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Existence of EB Tickets

• Subnetworks drawn at early stages can achieve comparable or even 
better accuracy than the dense NN
• Identify NN connectivity patterns at later stage can be “overcooking”
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Find EB Tickets with A Low-cost Detector

• Draw EB Tickets when HDs of subnetworks between consecutive 
epochs are smaller than a specific threshold
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Find EB Tickets with A Low-cost Detector

• Green -> yellow: smooth distance
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Efficient Training with EB Tickets

• Overall results on CIFAR-10/100 compared to the original LTH
progressive pruning and training

A power meter to
measure energy cost



Summary

• Propose the EB Lottery Ticket, which shows that the progressive
training in the original LTH can be stopped early
• EB tickets detector with hamming distance
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LTH for Graphs

Prune a GNN and a graph jointly

ICML 2021
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The Pruning Problem on Graphs

• Pruning for vision and language are referring to NNs
• GNNs are usually not very large
• However, the graph itself can be huge
• Training and inference on a dense graph can both be slow

• A well studied problem in the graph domain
• Graph sampling
• Graph sparsification
• Graph coarsening
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• Pruning both the GNN and the graph via IMP
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GAT on Cora, Citeseer, and PubMed

• GAT is more amenable to pruning



Performance Summary

Node size represents Inference
multiply–accumulate operations (MACs)
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Tell the Difference

• Graph sampling
• Graph augmentation
• Graph pruning
• Graph sparsification
• Graph coarsening
• Graph pooling
• Graph structure learning
• Graph coreset
• Graph condensation
• Graph lottery ticket



Method Nodes Edges Features
(the same 
nodes)

Learning? Is it the 
goal?

Note

Sampling N’ << N A’ ⊆ A X’ = X No No A pre-learning process, usually locally

Augmentation N’ ≠ N A’ ≠ A X’ ≠ X No No A pre-learning process

Pruning N’ < N A’ ⊆ A X’ ⊆ X Yes Yes Usually used for the NN graph

Sparsification N’ = N A’ ⊆ A X’ = X Yes/No Yes/No

Coarsening 
/Pooling

N’ < N A’ ⊆ A X’ ≠ X Yes Yes/No Coarsening is usually for node-level problems
Pooling is usually for graph-level problems

Structure 
learning

N’ = N A’ ≠ A X’ = X Yes No? 1. A may not be given
2. Learning maybe jointly with a GNN

Coreset N’ << N A’ = A X’ = X Yes No An importance score may be learned for each node

Condensation N’ << N A’ ≠ A X’ ≠ X Yes Yes G’ is a brand-new generated graph

Lottery ticket 
(UGS)

N’ = N A’ ⊆ A X’ = X Yes Yes/No 1. Verifying the existence of the LT
2. Jointly learned with a GNN



Coarsening Coreset

Condensation



EB on GCN

AAAI 2022


