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Roadmap

* The Lottery Ticket Hypothesis (LTH)
* The pruning problem
* The original LTH
* Linear mode connectivity and instability analysis (helps the LTH to scale up)
 Early-bird tickets (helps the LTH to become more practical)

* LTH and Graphs
* A Unified Lottery Ticket Hypothesis for Graph Neural Networks (ICML 2021)
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The Pruning Problem

* Such small (sparse) NNs can’t be trained in isolation to achieve
performance matching the full NN

* Representing the learned knowledge doesn’t require large capacity,
but the learning process does
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Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@csail.mit.edu mcarbin@csail.mit.edu

ICLR 2019 (Best Paper)

Learning can also be done in isolation for model with a small capacity

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation}—it can match the test accuracy of the
original network after training for at most the same number of iterations.
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* [terative magnitude pruning (IMP) * Hypothesis

* Training includes initialization and
optimization

* The initialization step is a lottery

* A lucky subnetwork will be
selected and driving the
optimization process, which can be
trained in isolation to achieve
performance matching the full NN

* One initialization maps to one set
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of winning tickets

Lottery Ticket Hypothesis - IMP procedure (Frankle & Carbin, 2019)
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Summary

e Contributions

* Propose the Lottery Ticket Hypothesis, which shows that retraining the
pruned NN is possible

* Verified the hypothesis with extensive experiments

* Limitations
* Experiment scale is still relatively small
* Later on, people found that the IMP strategy fails on ImageNet with large NNs

* IMP requires expensive iterative training
* Making LTH more of an analysis tool rather than a practical pruning method
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Can LTH Scales Up?

Linear Mode Connectivity and the Lottery Ticket Hypothesis

Jonathan Frankle! Gintare Karolina Dziugaite> Daniel M. Roy3* Michael Carbin !

ICML 2020

Yes. If we go back to somewhere close to the beginning, but not the
initial state for retraining.
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* linear interpolation instability (instability) of N to SGD noise as the
maximum increase in error along this path (red)
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* Instability < threshold
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*SGD training is very unstable

Error (%)

*The instability decreases as we increase k
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From iteration 0, we do not find linear mode connectivity.
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From early in training, we find linear mode connectivity ResNet-20 on CIFAR-10 ResNet-50 and Inception-v3 on ImageNet
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e Recall: Finding The Winning Tickets with IMP

Winning Ticket

Lottery Ticket Hypothesis - IMP procedure (Frankle & Carbin, 2019)
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Instability Analysis for LTH

* Linear connectivity correlates with winning tickets

* Hypothesis: Instability is a problem for sparse NNs but not dense NN,
sparse NNs get stuck in local optimum
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Summary

* Propose the instability analysis, which can be used to study NN
optimization dynamics
e The LTH
* Others optimization modules, e.g. the learning rate scheduler

* Solved one limitation of the original LTH

* Sparse IMP subnetworks can be trained to full accuracy when they find the
linearly connected iteration
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Yes. We don’t need full training to find the winning tickets
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Finding The Winning Tickets More Efficiently
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Figure 1: Retraining accuracy vs. epoch numbers at which the subnetworks are drawn, for both
PreResNet101 and VGG16 on the CIFAR-10/100 datasets, where p indicates the channel pruning
ratio and the dashed line shows the accuracy of the corresponding dense model on the same dataset,
% denotes the retraining accuracies of subnetworks drawn from the epochs with the best search
accuracies, and error bars show the minimum and maximum of three runs.



Existence of EB Tickets

e Subnetworks drawn at early stages can achieve comparable or even
better accuracy than the dense NN
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Figure 1: Retraining accuracy vs. epoch numbers at which the subnetworks are drawn, for both
PreResNet101 and VGG16 on the CIFAR-10/100 datasets, where p indicates the channel pruning
ratio and the dashed line shows the accuracy of the corresponding dense model on the same dataset,
% denotes the retraining accuracies of subnetworks drawn from the epochs with the best search
accuracies, and error bars show the minimum and maximum of three runs.



Existence of EB Tickets

e Subnetworks drawn at early stages can achieve comparable or even

better accuracy than the dense NN
* |[dentify NN connectivity patterns at later stage can be “overcooking’
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Figure 1: Retraining accuracy vs. epoch numbers at which the subnetworks are drawn, for both
PreResNet101 and VGG16 on the CIFAR-10/100 datasets, where p indicates the channel pruning
ratio and the dashed line shows the accuracy of the corresponding dense model on the same dataset,
% denotes the retraining accuracies of subnetworks drawn from the epochs with the best search
accuracies, and error bars show the minimum and maximum of three runs.
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Find EB Tickets with A Low-cost Detector

* Draw EB Tickets when HDs of subnetworks between consecutive
epochs are smaller than a specific threshold
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Epoch ¢ - Hamming distance (HD):
Measure the similarity
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Find EB Tickets with A Low-cost Detector
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Find EB Tickets with A Low-cost Detector

* Green -> yellow: smooth distance
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Efficient Training with EB Tickets

* Overall results on CIFAR-10/100 compared to the original LTH
progressive pruning and training

Metrics Overall Improvement

Total Training Energy Cost 16.7% ~ 78.7%
Accuracy -0.81% ~ +2.38%

KiLA

20T
66008

A power meter to
measure energy cost

Measurement Result
(accuracy, runtime)




Summary

* Propose the EB Lottery Ticket, which shows that the progressive
training in the original LTH can be stopped early

* EB tickets detector with hamming distance
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LTH for Graphs

A Unified Lottery Ticket Hypothesis for Graph Neural Networks
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Prune a GNN and a graph jointly
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The Pruning Problem on Graphs

* Pruning for vision and language are referring to NNs
* GNNs are usually not very large

* However, the graph itself can be huge
* Training and inference on a dense graph can both be slow

* A well studied problem in the graph domain
* Graph sampling
* Graph sparsification
* Graph coarsening
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Generalize LTH to Graphs

* Pruning both the GNN and the graph via IMP

Iterative Unified Graph Sparsification f N
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Generalize LTH to Graphs

* Pruning both the GNN and the graph via IMP

Algorithm 1 Unified GNN Sparsification (UGS)

Input: Graph G = {A, X}, GNN f(G,©¢), GNN’s ini-
tialization @y, initial masks m) = A, my = 1 €
RlI®ollo | Step size n, Ay, and Ag.

Output: Sparsified masks m, and my

1: foriterationz =0,1,2,...,N — 1 do

2:  Forward f(-,m} ©® ©;) with G = {m! ® A, X} to
compute the loss Lygg in Equation 3.
Backpropagate to update ®,,1 < ©; —nVe,Luas.
Update mz“ — mg — AgVmi Lucs.

3
4:
g — {147 X} {mg @147 X} 5:  Update mé“ < m'f, — /\(,vmécUGS.
6
7

\_ Sparse Graph Sparse GNNs

: end for
‘ : Set py, = 5% of the lowest magnitude values in mg to
GNN f(, @) f(',me ©) 6) 0 and others to 1, then obtain m,.
8: Set ps = 20% of the lowest magnitude values in my
to 0 and others to 1, then obtain my.
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Performance Summary
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Tell the Difference

* Graph sampling

* Graph augmentation

e Graph pruning

* Graph sparsification

* Graph coarsening

* Graph pooling

e Graph structure learning
e Graph coreset

* Graph condensation

* Graph lottery ticket



G={X,A} AcRVN XeRN

Method

Nodes

Edges

E (=

(the same
nodes)

—

Learning?

Is it the

goal?

I _ {X’,A,} A’ c RN’,N’ X/ c RN’,d’

Sampling N'<<N|ACA | X=X No No A pre-learning process, usually locally
Augmentation |[N'#N |A'2zA | X' #X No No A pre-learning process

Pruning N<N |ACA | XCSX Yes Yes Usually used for the NN graph

Sparsification |[|N'=N [A'CSA [ X' =X Yes/No Yes/No

Coarsening N'<N |ACA X X Yes Yes/No Coarsening is usually for node-level problems
/Pooling Pooling is usually for graph-level problems
Structure N=N |[AzA | X' =X Yes No? 1. A may not be given

learning 2. Learning maybe jointly with a GNN
Coreset N'<<N |A=A | X' =X Yes No An importance score may be learned for each node
Condensation [N <<N |A'zA [ X #X Yes Yes G’ is a brand-new generated graph

Lottery ticket |[N'=N [A'CA [ X' =X Yes Yes/No 1. Verifying the existence of the LT

(UGS) 2. Jointly learned with a GNN
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EB on GCN

Early-Bird GCNs: Graph-Network Co-Optimization Towards More Efficient

GCN Training and Inference via Drawing Early-Bird Lottery Tickets

Pretrain GCNs on full graphs  Sparsify graphs based on GCNs

% HEe) -

Graphs & GCNs Co-sparsification

Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, Yingyan Lin

Department of Electrical and Computer Engineering, Rice University

{haoran.you, zI55, zjzhou, yf22, yingyan.lin} @rice.edu

Joint EB Tickets

Retrain GCNs on subgraphs

Epoch subgraphs drawn from

0

0CiteSeer (pg =40%)
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Epoch subgraphs drawn from .
(a) Pairwise graph distance matrix
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