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Roadmap

* Model Explainability

* Motivating Examples for Images and Tabular Data

 GNN Explainability (Graph Data Explainability)
* Graphs vs. Images vs. Tabular Data
e SubgraphX (ICML 2021)



Model Explainability

* Goal: understand black-box models, e.g. NNs.

 Existing approaches
* Instance-level
* Example-specific understanding, why an input data is mapped to a certain output

* Model-level
* High-level generic understanding, how the model mechanism leads to a certain output



Motivating Examples: Images

* Instance-level: Which pixels are importance for classifying an image



Motivating Examples: Images

* Instance-level: Which pixels are importance for classifying an image

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change
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Motivating Examples: Images

* Instance-level: Which pixels are importance for classifying an image

Which pixels matter:
Saliency via Occlusion Ny

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain
Networks”, ECCV 2014 Go-Karts image is CCO public domain




Motivating Examples: Images

* Model-level: What kind of image maximizes the probability for a
certain class
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Motivating Examples: Images

Model-level: What kind of image maximizes the probability for a
certain class

* Treat pixels in the image as parameters and tune them with gradient ascent

Random Initialization

Flamingo Pelican
Synthesized

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural
Networks”, ICML Visualization for Deep Learning Workshop 2016. Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016;



Motivating Examples: Images

Model-level: What kind of image maximizes the probability for a
certain class

* Treat pixels in the image as parameters and tune them with gradient ascent

Random Initialization Smart Initialization considering multimodality.
The “grocery store” class

Flamingo Pelican
Synthesized

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural SyntheS|ZEd G roun d Truth
Networks”, ICML Visualization for Deep Learning Workshop 2016. Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016;
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e A feature selector for both instance-level and model-level
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Motivating Examples: Tabular Data

* A feature selector for both instance-level and model-level
* Usually involves a score function to assign each feature an importance score
* Instance-level
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Figure credit: https://github.com/slundberg/shap



Motivating Examples: Tabular Data

* A feature selector for both instance-level and model-level
* Usually involves a score function to assign each feature an importance score
* Instance-level

Output=04 Output=04
|
Age =65 —| — Age =65
Sex=F — m — Sex=F
BP =180 —> -] — BP=180
BMI=40 — +1 — BMI=40
T
Base rate =0.1 Base rate = 0.1
* Model-level
* Ex. a simple linear model
Age, Sex, BP, BMI—> Model y = bl*Age + b2*Sex + b3*BP + b4*BMI

Figure credit: https://github.com/slundberg/shap
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* Node classification



GNN Explainability

* Instance-level
* Node classification
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Figure credit: Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 9240.
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GNN Explainability

* Instance-level
* Graph classification

Explanation

Explanation

Important subgraph selection



GNN Explainability

* Instance-level
* Graph classification
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GNN Explainability (Graph Data Explainability)

* Explanation of graphs is more meaningful than images
* Image explanation is mostly for model understanding and debugging

* Graph explanation may reveal useful knowledge
* Data-level graph classification explanation is similar to frequent pattern mining.

* Explanation of graphs is more challenging than tabular data
e Graphs as tabular data with structure information



SubgraphX (ICML21)

On Explainability of Graph Neural Networks via Subgraph Explorations

1

Hao Yuan! Haiyang Yu' Jie Wang? Kang Li® Shuiwang Ji!

* Instance level
* Graph classification



Problem Formulation

* Goal: Identify the most important subgraph for classifying a graph
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Problem Formulation

* Goal: Identify the most important subgraph for classifying a graph
* Notations

f() GNN to be explained

g Input graph

{gl, T ,Qi, s ,gn} All connected subgraphs
g* The most important subgraph
* Objective

G* = argmax Score(f(-),G,G;)
|Gi| <Nmin



Challenges

* There are too many subgraphs. How can we explore them?
 What is a reasonable score function?



Subgraph Exploration via Monte Carlo Tree
Search (MCTS)
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Subgraph Exploration via Monte Carlo Tree
Search (MCTS)

* Tree construction: start with the input graph and take pruning actions
* Each node M in the MCT represents a subgraph G;
* Root node NO represents the input whole graph G
* Edge from a parent to its child represents a prune action @;

* VVariables needed for the MCTS algorithm

e C(N;,a;) denotes the number of counts for selecting
action a; for node N;.

o W(N;,a,) is the total reward for all (N;,a;) visits.

* QWNi,a;) = W(N;,a;)/C(N;,a;) and denotes the av-
eraged reward for multiple visits.

* R(MN;,a;) is the immediate reward for selecting a; on N,

R(Ni,a;) = Score(f(+),G,(Ni,a;))




Subgraph Exploration via Monte Carlo Tree
Search (MCTS)

* Each MCTS iteration selects a path to a leaf node G,

a* = argmax Q(N;,a;) + U(N;,a,),

a;
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Subgraph Exploration via Monte Carlo Tree

Search (MCTS)

* Each MCTS iteration selects a path to a leaf node G,
a* = argmax Q(N;,a;) + U(N;,a,),

a;

B _ \/Z , Q)
U(Mvaj)_AR(M J 1_|_kC(N ) )

* Then update the counts and total rewards by

C(N;,a;) = C(Ni,a;) + 1,
W (N aj) = W(AG,aj) + Score(f(-), G, Ge).



Subgraph Exploration via Monte Carlo Tree
Search (MCTS)

* Each MCTS iteration selects a path to a leaf node G,
a* = argmax Q(N;, a;) + U(N;, a;),

a;

\/Zk C(Mvak)
UN;,a;) = AR(N;,a; :
( a’.?) ( a’]) 1‘|—C(M,a3)

* Then update the counts and total rewards by

C(N;,a;) = C(Ni,a;) + 1,
W (N aj) = W(AG,aj) + Score(f(-), G, Ge).

* Finally, select the subgraph with the highest reward from the leaf level



Score Functions
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e Recall the instance-level feature selection of tabular data
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e Recall the instance-level feature selection of tabular data
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Score Functions

e Recall the instance-level feature selection of tabular data

Output=04

Age=65 —
Sex=F —
BP =180 —
BMI=40 —

Base rate = 0.1

e Score function

* Ablation study: I, (f) = v(F) —v(F\ {f})
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e Recall the instance-level feature selection of tabular data
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e Score function

* Ablation study: I, (f) = v(F) —v(F\ {f})

Output=04
1
— Age =65
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— BP =180
— BMI =40

Base rate = 0.1

e Bivariate association: L.(f) = v({f}) —v(0)
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Score Functions

e Recall the instance-level feature selection of tabular data

Output=04

Age=65 —
Sex=F —
BP =180 —
BMI=40 —

Base rate = 0.1

e Score function

* Ablation study: I, (f) = v(F) —v(F\ {f})

Output=04
1
— Age =65
— Sex=F
— BP =180
— BMI =40

Base rate = 0.1

e Bivariate association: L.(f) = v({f}) —v(0)

* Consider interactions between features:

* Ex.y=1{Age > BP/3}

[F all features
f  target features

~

v: 28 5 R predictive evaluation

\L,(-) importance score

J

Note: exclude (replace w/ average)



Score Functions

e Recall the instance-level feature selection of tabular data

Output=04 Output=04
Age =65 — — Age =65 KF all features )
Sex=F — (— Sex=F f  target features
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e Score function - ~
e Ablation study: L(f)=v(F)—-v(F\{f} Note: exclude (replace w/ average)
e Bivariate association: L.(f) = v({f}) — v(0)
* Consider interactions between features: [0.][ o} @9 ® @ \|[
* Ex.y = 1{Age > BP/3} = =
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Score Functions

e Recall the instance-level feature selection of tabular data

Output=04 Output=04
Age =65 — — Age =65 KF all features )
B:e=X1=8; - S f  target features
BMI =40 — o v 2 5 RY predictive evaluation
Base rate = 0.1 BaTserate=0.1 Iy() importance score
e Score function - ~
e Ablation study: L(f)=v(F)—-v(F\{f} Note: exclude (replace w/ average)
* Bivariate association: L.(f) = v({f}) — v(D)
e Consider interactions between features: [0.][ o} @9 ® @ \|[
* Ex.y = 1{Age > BP/3} = =
+ shapley value: 1,(f) = - 3" —LA(5.0) O 98 et
A(f,8,v) = v (SULF) —v(9) e9o/ee) o jjo_




Shapley Value on Graphs

* The selected subgraph G; ( {v1,---,vx} ) as one “feature”
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Shapley Value on Graphs

* The selected subgraph G; ( {v1,---,vx} ) as one “feature”
* Neighbors of G; within L-hops {vgi1,--- ,v,} as other “features”

F = {g’iavk—Fl)"' 7UT}
f=g
V = GNN

Z ]F\ 1) f S V)

CF\{ !5!

A(f,5v)=v(SU{f}) —v(5)




SubgraphX Framework
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Result Visualization

e MUTAG dataset for molecule classification
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Reference

e SubgraphX: Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S. (2021). On
explainability of graph neural networks via subgraph explorations:
https://arxiv.orq/pdf/2102.05152.pdf

e Shapley value:
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d7
6c43dfd28b67767-Paper.pdf
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