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Roadmap

• Model Explainability
• Motivating Examples for Images and Tabular Data

• GNN Explainability (Graph Data Explainability)
• Graphs vs. Images vs. Tabular Data
• SubgraphX (ICML 2021)



Model Explainability

• Goal: understand black-box models, e.g. NNs.
• Existing approaches
• Instance-level

• Example-specific understanding, why an input data is mapped to a certain output
• Model-level

• High-level generic understanding, how the model mechanism leads to a certain output
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Motivating Examples: Images

• Model-level: What kind of image maximizes the probability for a 
certain class

• Treat pixels in the image as parameters and tune them with gradient ascent

Random Initialization

Synthesized
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural 
Networks”, ICML Visualization for Deep Learning Workshop 2016. Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016;



Motivating Examples: Images

• Model-level: What kind of image maximizes the probability for a 
certain class

• Treat pixels in the image as parameters and tune them with gradient ascent

Random Initialization Smart Initialization considering multimodality. 
The “grocery store” class

Ground TruthSynthesized

Synthesized
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural 
Networks”, ICML Visualization for Deep Learning Workshop 2016. Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016;
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Motivating Examples: Tabular Data

• A feature selector for both instance-level and model-level
• Usually involves a score function to assign each feature an importance score
• Instance-level

• Model-level
• Ex. a simple linear model

Age, Sex, BP, BMI y = b1*Age + b2*Sex + b3*BP + b4*BMI

Figure credit: https://github.com/slundberg/shap
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GNN Explainability

• Instance-level
• Node classification

Neighbor node selection Node feature selection

Figure credit: Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating 
explanations for graph neural networks. Advances in neural information processing systems, 32, 9240.
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GNN Explainability

• Instance-level
• Graph classification

Important subgraph selection

Model-level
(data-level)
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GNN Explainability (Graph Data Explainability)

• Explanation of graphs is more meaningful than images
• Image explanation is mostly for model understanding and debugging
• Graph explanation may reveal useful knowledge

• Data-level graph classification explanation is similar to frequent pattern mining.

• Explanation of graphs is more challenging than tabular data
• Graphs as tabular data with structure information



SubgraphX (ICML21)

• Instance level
• Graph classification
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Problem Formulation

• Goal: Identify the most important subgraph for classifying a graph
• Notations

• Objective

GNN to be explained

Input graph

All connected subgraphs

The most important subgraph



Challenges

• There are too many subgraphs. How can we explore them?
• What is a reasonable score function?



Subgraph Exploration via Monte Carlo Tree 
Search (MCTS)
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Subgraph Exploration via Monte Carlo Tree 
Search (MCTS)
• Each MCTS iteration selects a path to a leaf node

• Then update the counts and total rewards by 

• Finally, select the subgraph with the highest reward from the leaf level
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Score Functions

• Recall the instance-level feature selection of tabular data 

• Score function
• Ablation study:
• Bivariate association:
• Consider interactions between features:
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Shapley Value on Graphs

• The selected subgraph (                      ) as one “feature”
• Neighbors of       within L-hops                              as other “features”

GNN



SubgraphX Framework

Shapley Value Scoring

MCTS



Result Visualization

• MUTAG dataset for molecule classification



Reference

• SubgraphX: Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S. (2021). On 
explainability of graph neural networks via subgraph explorations: 
https://arxiv.org/pdf/2102.05152.pdf
• Shapley value: 

https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d7
6c43dfd28b67767-Paper.pdf

https://arxiv.org/pdf/2102.05152.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
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