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% Outline

® Part 1: Gaussian Processes (GPs) , | L,
* Motivating example of GPs :
« Parametric model and non-parametric model go
« Definition of GPs -
« Inference and learning with GPs -20 . ) 0 L |
« Deep kernel learning (a);“lln o) po:r;um

« Graph Convolutional Gaussian Processes (ICML 2019)

® Part 2: Determinantal Point Process (DPP)

Walker, I., & Glocker, B. (2019, May). Graph convolutional Gaussian processes. In International Conference on Machine
Learning (pp. 6495-6504). PMLR. g



https://arxiv.org/abs/1905.05739v1

Gaussian Process (GP)



Motivation: non-linear regression

2.0 T I [ | |

1.5 F -

1.0 | -

0.5 e _

2/335



Motivation: non-linear regression

2.0 T I [ | |

1.5 F -

1.0 | -

0.5 e * —

3/335



Motivation: non-linear regression

2.0 | |

1.5 F

10

15

20

- P



Motivation: non-linear regression
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Motivation: non-linear regression

2.0 | | | |

Can we do this with a plain old Gaussian?
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Gaussian distribution
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Gaussian distribution
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Gaussian distribution

P(yaly1, %) o< exp (=3 (yz — 1) 5 yz — 1))
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Gaussian distribution

P(yaly1, %) o< exp (=3 (yz — 1) 5 yz — 1))
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New visualisation
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New visualisation
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New visualisation
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New visualisation
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New visualisation
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New visualisation
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New visualisation
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New visualisation

3

2

1

S0

1

2

-3
2 0 2

Yy

1 9 8 6 .4
9 1 9 8 .6
=18 9 1 9 =8
6 &8 9 1 9
_.4 6 8 9 1

2

3
variable index

4

65 /335



New visualisation
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New visualisation
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Regression using Gaussians
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Regression using Gaussians
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Regression using Gaussians
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Regression using Gaussians

Z(X]_,XQ) = K(Xl,Xz) + |0'3

5z (1 —x2)?

N
|
N

K(x1,x2) = 0”e
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Regression: probabilistic inference in function space
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Motivation: non-linear regression
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y
ﬁ Learning Functions from Data

Guess the parametric form of a function that could fit the data

> flx,w) =w'x [Linear function of w and x]
> f(x,w) =wlop(x) [Linear function of w] (Linear Basis Function
Model)

> f(x,w) = g(w'é(x)) [Non-linear in x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1, x,x*) and
x € R! then f(x,w) = wy + wix + wyx? is a quadratic function.



y
ﬁ Learning Functions from Data

Guess the parametric form of a function that could fit the data

> flx,w) =w'x [Linear function of w and x]
> f(x,w) =wlop(x) [Linear function of w] (Linear Basis Function
Model)

> f(x,w) = g(w'é(x)) [Non-linear in x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1, x,x*) and
x € R! then f(x,w) = wy + wix + wox? is a quadratic function.

Choose an error measure E(w), minimize with respect to w

> E(w) = S0 [F(xi,w) — y(x))?



y
{/ A Probabilistic Approach

We could explicitly account for noise in our model.
> y(x) = f(x,w) + €(x), where €(x) is a noise function.

One commonly takes ¢(x) = N (0, o%) for i.i.d. additive Gaussian noise, in
which case

pOy(x)|x,w,0%) = N (y(x);f(x,w), %) Observation Model
N

piylx,w,0%) = [ [N (y(x;);f(xi,w),0?)  Likelihood

i=]

» Maximize the likelihood of the data p(y|x, w, o%) with respect to o, w.



y
{/ A Probabilistic Approach

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2,

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

© Eric Xing @ CMU, 2005-2020 33 g
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; Bayesian Model

likelihood x prior - py|X,w,o%)p(w)

posterior = pwly,X,0%) =
ply|X,o?)

marginal likelihood’

Predictive Distribution

p(y|xs,y, X) = /p(ylx*,w)p(wly,X)dw.



y
f Bayesian Model

likelihood x prior - py|X,w,o%)p(w)

posterior = pwly,X,0%) =
ply|X,o?)

marginal likelihood’

Predictive Distribution

PO, X) = / p( e, W)p(Wly, X)dw

» Average of infinitely many models weighted by their posterior
probabilities.

» No over-fitting, automatically calibrated complexity.

» Typically more interested in distribution over functions than in
parameters w.



; Parametric vs. Nonparameteric Modeling

« Parametric models:
« Assume data can be represented using a fixed, finite number of parameters.

« Mixture of K Gaussians, polynomial regression, neural nets, etc.

« Nonparameteric models:

| Histogram | Histogram, bins shifted

o o
N w
i

Normalized Density
=]
=

 Number of parameters can grow with sample size.
« Kernel density estimation.

o
o

o * bd b+ o+ S 7 x tF ++ b Helb i
Tophat Kernel Density Gaussian Kernel Density

o
w

o
N
L

e Bayesian nonparameterics:
 Allow for an infinite number of parameters a priori.

o
A

Normalized Density

o
o
L

+ 44 4+ 4 + 1 + 4+ 4 4 M e
0 5 0 5

« Models of finite datasets will have only finite number of parametexrs.
« Other parameters are integrated out.

© Eric Xing @ CMU, 2005-2020 36 g
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y
ﬁ Parametric Bayesian Inference

+ A parametric likelihood: x ~ p(-|0)
+ Prioron®: 7(6)
+ Posterior distribution

p(0lx) = [p(x|0)7(6)dd

Examples:

» Gaussian distribution prior + 2D Gaussian likelihood — Gaussian posterior distribution
* Dirichilet distribution prior + 2D Multinomial likelihood — Dirichlet posterior distribution



Nonparametric Bayesian Inference

M is a richer model, e.g., with an infinite set of parameters

+ A nonparametric likelihood: x ~ p(:|M)
s Prioron m: x(M)
+ Posterior distribution

D(Mlx) = p(x|M)m(M

)
= Tredmraan * PMTM

Examples: function 2

Gaussian Process Prior [Doob, 1944;
Z o0 Rasmussen & Williams, 2006]
+ Gaussian/Sigmoid/Softmax likelihood

0 05 1 .
lnput,x © Eric Xing @ CMU, 2005-2020



% Weight-space View

| Consider a simple linear model that result in a family of functions

f(x) =ao+ aix,
ap,a; ~ N(0,1).

Output, f(x)

25 i . . . ; . ; i i
-10 -8 -6 -4 -2 0 2 4 6 8 10
Input, X © Eric Xing @ CMU, 2005-2020 39
L 4



y
f Function-space View

I We are interested in the distribution over functions induced by the
distribution over parameters...

| In fact, we can characterize the properties of these functions directly:

f(x|ag,ar) = ap + arx, ag,a; ~ N(0,1).
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I We are interested in the distribution over functions induced by the
distribution over parameters...

| In fact, we can characterize the properties of these functions directly:

f(x|ag,ar) = ap + arx, ag,a; ~ N(0,1).
Elf(x)] = Elag] + Ela;|x = 0.



Function-space View

I We are interested in the distribution over functions induced by the
distribution over parameters...

| In fact, we can characterize the properties of these functions directly:

f(x|ag,ar) = ap + arx, ag,a; ~ N(0,1).
Elf(x)] = Elag] + E[a;]x = 0.
cov[f(xp),f(xc)] = E[f (xp)f (xc)] — E[f (xp) |E[f (xc)]



Function-space View

I We are interested in the distribution over functions induced by the
distribution over parameters...

| In fact, we can characterize the properties of these functions directly:

f(x|ag,ar) = ap + arx, ag,a; ~ N(0,1).

ap|l + Ela1]x = 0.

f (x)f (xc)] — EJf () JE[f (xc )]

ag + apay (xp + x.) + asxpx.] — 0
at] + Elatxyx.] + Elaga; (x, + x.)]
=1+ xpx.+0

=1 4+ xpx, .




y
f Function-space View

| Any collection of f(x) values has a joint Gaussian distribution
NOTE: here we have fixed x instead of X, and the randomness comes from the function f

f(x1), - f(aw)] ~ N(0,K)
Kij = cov(f(x;),f(x;)) = k(xi, x;) = 1+ xpxc .



y
f Function-space View

| Any collection of f(x) values has a joint Gaussian distribution
NOTE: here we have fixed x instead of X, and the randomness comes from the function f

f(x1), - f(aw)] ~ N(0,K)
Kij = cov(f(x;),f(x;)) = k(xi, x;) = 1+ xpxc .

| Definition: A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write

f(x) ~ GP(m,k) to mean
[f(xl)a s af(xN)] ~ N(”HK)

pi = m(x;)
Kij = k(x;,x;) ,
for any collection of input values xi, . .., xy. In other words, f 1s a GP with

mean function m(x) and covariance kernel k(x;, x;).

3@ CMU, 2005-2020
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{/ Another GP Example: Linear Basis Function Models

| Model specification: flx,w) =wre(x)

I Moments of the the induced distribution over functions:

E[f(x,w)] = m(x) = E[w']¢(x) =0
cov(f(x;),f(x )) k(x ij) E[f(x,) (xj)]
¢ (x:) Elww|p(x) — 0

P(xi)" Lo (%))

Ef (x)[E[f (x)]

» f(x,w) is a Gaussian process, f(x) ~ N (m, k) with mean function
m(x) = 0 and covariance kernel k(x;, x;) = @(x;)" L, (x;).



? Gaussian Processes

Interpretabllity:

I We are ultimately more interested in — and have stronger intuitions about

— the functions that model our data than weights w in a parametric
model. We can express these intuitions using a covariance kernel.

(Generalization:

| The kernel controls the support and inductive biases of our model, and
thus its ability to generalize to unseen.



’
ﬁ Gaussian Process: Graphical Model

Observations Y1 @




Regression: probabilistic inference in function space

149 /335 g



Regression: probabilistic inference in function space

Non-parametric (oco-parametric)
p(y|d) = N(0,%)

E(Xl,XQ) = K(Xl,Xg) + |0‘3

1

2 (X1 —X2)2

K(x1,x2) = 0%e 2P

Parametric model

y(x) = f(x;0) 4 oye

e ~N(0,1)

150 / 335



Mathematical Foundations: Regression

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression) y Ty
Y(x) = f(X) + o

y f(x)
p(e) = N(0,1)

156 / 335 g



Mathematical Foundations: Regression

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression) y Oy
y(x) = f(X) + eoy
f(x)
p(e) = N(0,1)
place GP prior over the non-linear function
X
p(f(X)|0) = GP(0,K(x,x))
K(x,x') = 0% exp (—%(X _ x’)2> (smoothly wiggling functions expected)
’ 2
156 / 335



Mathematical Foundations: Regression

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression) y Oy
y(x) = f(x) + eoy
f(x)
p(e) = N(0,1)
place GP prior over the non-linear function
X
p(f(x)]0) = GP(0,K(x, X))
K(x,x') = 0% exp <—%(x _ x’)2> (smoothly wiggling functions expected)
’ 2
sum of Gaussian variables = Gaussian: induces a GP over y(x)
p(y(x)|0) = GP(0,K(x,X") + Ioy)
156 / 335



Mathematical Foundations: Marginalisation

Q2. A GP is "like" a Gaussian distribution with an infinitely long mean vector and
an "infinite by infinite" covariance matrix, so how do we represent it on a computer?



Mathematical Foundations: Marginalisation

Q2. A GP is "like" a Gaussian distribution with an infinitely long mean vector and
an "infinite by infinite" covariance matrix, so how do we represent it on a computer?

We are saved by the marginalisation property:

p(y;) = / p(Y1,Y2)dy,

p(yl,vg)ZN([ b ] | [ 5 D



Mathematical Foundations: Marginalisation

Q2. A GP is "like" a Gaussian distribution with an infinitely long mean vector and
an "infinite by infinite" covariance matrix, so how do we represent it on a computer?

We are saved by the marginalisation property:

ply;) = / p(Y1,Y2)dy,

@ =~ (@R 2]) — w-van

—> Only need to represent finite dimensional projections of GPs on computer.

157 / 335



Mathematical Foundations: Prediction

Q3. How do we make predictions?

158 /335



Mathematical Foundations: Prediction

Q3. How do we make predictions?

A=K(x1, x1) p(Y1:Y2) ZN([ g ] , [ é} g D
B=K(x1, x2)
C=K(x2, x2) p(Y1lY2) = p(;{(;:?)

= p(y,ly,) =N(a+BC '(y, —b),A—BC 'B)

158 /335



Mathematical Foundations: Prediction

Q3. How do we make predictions?

A B
A=K(x1, x1) p(Y1,Y5) :N<[ ta) ] ; [ B C ])
B=K(x1, x2) ( V )
C=K(x2, x2) p(Y11Y2) = 2l 2 ]3,&332

— p(Y1lY2) =N(@a+ BC_l(yz —b),A - BC_lBT)

— T

predictive mean predictive covariance
Hy,ly, = a+BC™(y, — b) Yy,ly, =A—BC'B'
=BC 'y, predictive _  prior  _ reduction in
uncertainty  uncertainty uncertainty
= Wy2
linear in the data predictions more confident than prior
158 / 335
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% Outline

® Part 1: Gaussian Processes (GPs) ) | .

0 0.5 1 0 0.5 1
input, x input, x

‘  Review (a), prior (b), posterior
« Comparing different kernel functions (IOU) | |

* Deep kernel learning
« Graph Convolutional Gaussian Processes (ICML 2019)

® Part 2: Determinantal Point Process (DPP)

Walker, I., & Glocker, B. (2019, May). Graph convolutional Gaussian processes. In International Conference on Machine
Learning (pp. 6495-6504). PMLR. g



https://arxiv.org/abs/1905.05739v1

’
ﬁ Review: Definition of Gaussian Process

A Gaussian process (GP) 1s a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write

f(x) ~ GP(m,k) to mean
f(x1)s - f )] ~ N, K)

Hi = m(x,)
Ku — (-xiaxj)a
for any collection of input values xi, ..., xy. In other words, f 1s a GP with

mean function m(x) and covariance kernel k(x;, x;).

Note: GP is a nonparameteric model, meaning the number of parameters can
grow with sample size.



Mathematical Foundations: Prediction

Q3. How do we make predictions?

158 /335



Mathematical Foundations: Prediction

Q3. How do we make predictions?

A=K(x1, x1) p(Y1:Y2) ZN([ z ] , [ S‘T g D
B=K(x1, x2) V
C=K(x2, x2) p(Y1lY2) = p(;{(;;;Q)

= p(Y1]y,) =N(a+ BC_l(yz —b),A— BC_lBT)

158 /335



Mathematical Foundations: Prediction

Q3. How do we make predictions?

A=K(x1, x1) p(y;’VQ)ng]’[BAT ED
B=K(x1, x2)
C=K(x2, x2) p(Y1lY2) = %

= p(Y1]y,) =N(a+ BC_l(yz —b),A— BC_lBT)

— T

predictive mean predictive covariance
'uV1|y2 =a-+ BC_l(y2 - b) Z]y1|Y2 =A- BC_lBT
=BC 'y, predictive _  prior  _ reduction in
uncertainty  uncertainty uncertainty
= Wy2
linear in the data predictions more confident than prior

158 /335



Exponentiated Quadratic Kernel

The exponentiated quadratic kernel (also known as squared exponential kernel, Gaussian kernel or radial basis function
kernel) is one of the most popular kernels used in Gaussian process modelling. It can be computed as:

2
ma o m
k(z,,z) = o exp (— | o )

242
With:

« o2 the overall variance (o is also known as amplitude).
» {the lengthscale.



Exponentiated Quadratic Kernel

The exponentiated quadratic kernel (also known as squared exponential kernel, Gaussian kernel or radial basis function
kernel) is one of the most popular kernels used in Gaussian process modelling. It can be computed as:

2
ma o m
k(z,,z) = o exp (— | o )

242
With:

« o2 the overall variance (o is also known as amplitude).
» {the lengthscale.

Exponentiated quadratic distance plot




Exponentiated Quadratic Kernel

The exponentiated quadratic kernel (also known as squared exponential kernel, Gaussian kernel or radial basis function
kernel) is one of the most popular kernels used in Gaussian process modelling. It can be computed as:

2
r, — &
k(“aa i b) 2e || a b”
With:

242

« o2 the overall variance (o is also known as amplitude).
» {the lengthscale.

Exponentiated quadratic . .
Covariance matrix
Samples from{=1,0=1

f=1,0=1
Exponentiated quadratic distance plot
1.0

—_—f=]1l o0=1
£=0.5 -4 -3 -2 -1 0 1 2 3 4 4 2 0 2 4
— =1 X Covariante matrix
- {=03,0=1
= 0.6
o
X
¥ 0.4
0.2
0.0
-4




% Periodic Kernel

2 .
k(2a; 2p) = 0 exp(_g_'zsinz (Wlm—pmbl))

With:

« o2 the overall variance (o is also known as amplitude).
» [ the lengthscale.
» pthe period, which is the distance between repetitions.



% Periodic Kernel

k(z.,xs) = o exp (— !32—2sin2 (w@))

With:

+ o2 the overall variance (o is also known as amplitude).
« £ the lengthscale.
» pthe period, which is the distance between repetitions.

Periodic distance plot (c=1)

1.0 — =1,
— [=2
0.8 — =0

=20 =15 -1.0 -05 00 05 1.0



% Periodic Kernel

k(z.,xs) = o exp (— !32—2sin2 (w@))

With:

+ o2 the overall variance (o is also known as amplitude).
« £ the lengthscale.

« p the period, which is the distance between repetitions. Anlmidnb.

Covariance matrix

Samples fromf{=1,p=1

Periodic distance plot (o0=1) 1

-~ |\
0.8 — =0
- -20 -15 -1.0 -0.5 0.0 05 1.0 15
% X
a 0.6 Covariance matrix
= Samples fromf{=2,p=1 {=2,p=1
X 0.4 0.5 * \“ He
-1 -0.9
0.2 0.0 -
> x 0 -0.8 %
0.0 -0.5 . . -
-20 =15 -=1.0 =05 0.0 0.5 1.0 10 \ '

Xz — Xp ' ,
-20 -15 -10 -05 00 05 10 15 20 -2 -1 0 1 2



Combine Kernels by Multiplication: Local Periodic

The local periodic kernel is a multiplication of the periodic kernel with the exponentiated quadratic kernel to allow the
periods to vary over longer distances. Note that the variance parameters o are combined into one.

2
2 - -
k(ﬁca, mb) = 0-2 exp ——Sin2 (wu) exp | — ” b”
& P 28,

« o2 the overall variance (o is also known as amplitude).
« £, lengthscale of the periodic function.

» pthe period.

+ EEQ the lengthscale of the exponentiated quadratic.

With:



/' Combine Kernels by Multiplication: Local Periodic

The local periodic kernel is a multiplication of the periodic kernel with the exponentiated quadratic kernel to allow the

periods to vary over longer distances. Note that the variance parameters o are combined into one.

2 |z, — x| (B
k(zq, ) = 02 exp| — —sin? (n—) exp| —
( b) P( 2 p P 2€§q

P

With:
« o2 the overall variance (o is also known as amplitude).
. fp lengthscale of the periodic function.
» pthe period.
+ feq the lengthscale of the exponentiated quadratic.

Local periodic distance plot (=1, {; =1, p=1)

K(xa, Xp)

1.0 1.5 2.0

'~20 -15 -1.0 -05 00 05
Xz — Xp



/' Combine Kernels by Multiplication: Local Periodic

The local periodic kernel is a multiplication of the periodic kernel with the exponentiated quadratic kernel to allow the

periods to vary over longer distances. Note that the variance parameters o are combined into one.
2
2 2 . of |za— |za — |
k(zq,zp) = 0” exp ——sin( r—— | | exp| - >
With: Local periodic (=1, f,=1,p=1)
Covariance maftrix
Samples from feq =1 leg=1

« o2 the overall variance (¢ is also known as amplitude).
. £p lengthscale of the periodic function.

» p the period.

* {4 the lengthscale of the exponentiated quadratic.

Local periodic distance plot (=1, {; =1, p=1)

.—2.0 -1.5 -=1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Xa — Xp



Passenger numbers (1000's)

y
{/ Example: Airline Passenger Prediction
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Picture credit: kimnewzealand (https://rpubs.com/kimnewzealand/311446)
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; Gaussian Process and Deep Kernel Learning

¢ By adding GP as a layer to a deep neural net, we can think of it as
adding an infinite hidden layer with a particular prior on the weights

q¢ Deep kernel learning [wilson et al., 2016] LdL —~ W @
¢« Combines the inductive biases of I“ﬂ = NA / .Jxourpm T
deep models with the non-parametric | N : ]
flexibility of Gaussian processes "‘-...\ / \ L
¢ GPs add powerful regularization to : - >/ .
the network /\ //\\ y'P
o« Additionally, they provide predictive %8 A AN '
uncertainty estimates / \\ :
Vi (6)
| Hidden layers

oo layer

© Eric Xing @ CMU, 2005-2020 76 g
L 4



; Deep Kernel Learning

| Combines inductive biases of deep learning architectures with the
nonparametric flexibility of Gaussian processes.

| Starting from some base kernel, we can get a deep kernel using
functional composition:

k(z,z') = k(h(z), h(z))

W
- ~ W® [0

[nput layer  (a" y—> W) 1"\
NN o~ — /I« \\Output layer

\

A
/ \\

\ O\ ;
\ N/ 1(2)\ ¢ ¢ o /| . \ N\
‘ b Gl A P ey i (N \ \J |

x l / \ "\ ~{ p(0) Y VN
\ / \ / \ 7 4 R W &
4 § \. | i/ s
. 1 . & . i . \) .
“C \ , \ o “ : ‘;
£ R N XA / 1 yp
£ F— N p@ Y\
£ v, / — \ . /\ | / /
g e A | [/
[ < ~ \1 / /
.« .. \l f o
/ i\ / /

Vs (B)

Hidden layers |

© Eric Xing @ CMU, 2005-2020 77
oo layer ¢




/
ﬁ Graph Convolutional Gaussian Processes (ICML 2019)

Given a graph. G = (V, £) with features in RIVIX4 define gp f : RIVIX4 5 R

f is a function on graphs, but it ignores graph structure.
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where p(-) measures the intrinsic radial distance and 6(-) N N
measures the intrinsic angular distance from z to z’.

VI



’
{/ Graph Convolutional Gaussian Processes (ICML 2019)

Given a graph. G = (V, £) with features in RIVIX4 define gp f : RIVIX4 5 R
f is a function on graphs, but it ignores graph structure.

f¥) = h(Z @) = h(2) d

h - RIVIX(UKd) _y R Z :RIVIXd _y RIVIX(JKd)
VI (0
Different u;x(x,x’) can be used for Z
* Manifold: J%'
, 7 AN 2 Q 7 / —Q- 2 [ J.K-d
llj’k(X,X) _ exp(— (p(X };3—2 pk) )exp(—( (X )2(0)—3 J) ) .
where p(-) measures the intrinsic radial distance and 6(-) N y
measures the intrinsic angular distance from z to z’. | | v
* General graphs: |
/ 1 / — / Id
uj(X,X) :eXp(_E(p(X7X) _pJ)EJ l(p(X,X) _:0.])) U Z

p(x,x') = (deg(x)""/2, deg(x)""/?)
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{/ Graph Convolutional Gaussian Processes (ICML 2019)

Application: superpixel digit classification and pose classification

& & ¢

'

V. | \ ‘
{ q

/ \

[

MNIST Superpixel 75 Table 3. Error rates on MPI Faust mesh classification
ChebNet (Defferrard et al., 2016)  24.4% Number of vertices 500 1000 2500
MoNet (Monti et al., 2017) 8.9% MoNet 40.00% 33.33% 33.33%

GCGP 4.2 % GCGP 2333% 10.00% 3.33%



; Summary

| Gaussian process are Bayesian nonparametric models that can
represent distributions over smooth functions.

| Inference can be done fully analytically (in case of Gaussian likelihood).

| Gaussian process can be combined with different kernel functions
and even deep neural networks.



Determinantal Point Process (DPP)



; Subset Selection

 (Given a set of K items, select a subset from them

e Extractive document summarization: select a subset of sentences to
summarize a document

« Feature selection: select a subset of features to speed up computation

* Product recommendation: recommend a subset of products to users



; Diverse Subset Selection

« We prefer selected items to be mutually dissimilar from each other

 Diverse extractive document summarization: a subset of sentences with
different meanings

» Diverse feature selection: a subset of features represent different
perspectives of the data

« Diverse product recommendation: no redundant products from the same
category



% Determinantal Point Process (DPP)

a A distribution over subsets and favors "diverse” subsets

a Given a set of K items Y = {a;}{=,, Wwhere q; is the feature representation of item
l

a Calculate a K-by-K Gram matrix L, where L;; =< a;, a; >.

a The probability of a subset of items Y € Y is defined as
~ det(Ly)
~det(L+ 1)

a Ly is a sub-matrix of L where the rows and columns are indexed by elements in Y.
a det(-) denotes the determinant of a matrix
2 |is an identity matrix

p(Y)



? Determinantal Point Process (DPP)

Y ={2,3} € {1,2,3,4}




% Diversity and DPP

o DPP has an induction bias of diversity: it has higher probability mass on
a subset where the items are more diverse,

a Why?
a det(Ly) is the volume of the parallelepiped formed by vectors in the subset
indexed by Y



% Partition Function (Normalizing Factor) of DPP

o Has a closed-form det(L + I)

o How to prove det(L + I) is the partition function?
o Namely det(L + 1) = Xycy det(Ly)

o We first prove the following theorem

Y = (1,234}
A={24)

Theorem 1 For any AC Y, 1 0 0 0

Y det(Ly) = det(L + I ), 8 8 (1) 8

ACYCY 0O 0 0 O

where [; is the diagonal matrix with ones in the diagonal positions
corresponding to elements of A =) — A, and zeros everywhere else.

a Let A be an empty set, then det(z +1) = Z det(Ly)

YSy



% Kernel Version of DPP

Catettate-ak-by-K-Grammatrbwhere-L;; =< a;,a; >.

!

Calculate a K-by-K kernel matrix L, where L;; = l(a;, a;)=< ¢(a;), p(a;) >
a [(+,) is a kernel function.

~ det(Ly)
Cdet(L+ 1)

p(Y)



% Deep DPP

o Calculate a K-by-K kernel matrix L, where L;; = l(a;, a))=< ¢(a;), p(a;) >
a I(-,) is a deep kernel. $

— A deep neural network
det(L + I)




% Inference: Find the Mode of DPP

o Y*=argmaxy logdet(Ly)

a Exact solution is NP hard.

a Approximate algorithm (Gillenwater et al., 2012)
a Continuous relaxation of item selection variables: {0,1} = [0,1]

o Continuous relaxation of logdet(Ly): F(y)=logdet(diag(y)(L-1)+1)
o Find y*= argmax,, F(y)

a Rounding elements in y* to {0,1}



% Learning: Hyperparameters in the Kernel

o Learn the hyperparameters in the kernel function

o Observations: (universal set Y, selected subset Y)

o E.g., in the training data of extraction summarization, the groundtruth
sentences are given

o Maximum log-likelihood

N N
log ﬂp(myi) = Z log det(Ly, ) — logdet(Ly, + Iy,)
i=1 =1



% Conditional DPP

o Personalized product recommendation: given a user x and a set of
products Y, select a subset of products Y that are not only diverse, but also
relevant to the user

o Calculate a K-by-K kernel matrix L(x), where L;;(x) = l(a;, a;|x)
a E.g. l(a;ai|x) = gla;, x)s(a;, a))g(a;, x)

det(Ly(x))
det(L(x) + 1)

p(Y|x) =



% Case Study: Deep DPP for Multi-label Classification

o Multi-label classification (MLC): given an input, select a subset of labels

o Deep DPP for MLC p(S|z) = djfzél(‘j)(?)l)

o Incorporate prior knowledge
a Cannot links and must links

.......

o(a;) - o(ay) t L'F "7 Increasing k(a,,a;)
det(Ls) | o discourages the
-selecti f
., PO e maxe L({(zn,Sn)}n=1)+
A~ M= T kana)+ ¥ kanay)
(i,7)EM (1,7)€C

.-/ Decreasing k(a,,a;)
-* J  encourages the
co-selection of
label z and j

o(a:) - o(a;) |
det(Lgs) 1
p(S)1

(Xie et al., 2017)
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What effect do the hyper-parameters have?

K(Xl,XQ) = O'2 exXp (—#(Xl — X2)2>

@ Hyper-parameters have a strong effect
» | controls the horizontal length-scale

» o2 controls the vertical scale of the data

@ — need automatic learning of hyper-parameters from data e.g.

| = short

arg max log p(y |0)

l,02

| = medium

| = long

224 /335

3



Regression: probabilistic inference in function space

Non-parametric (oo-parametric)
p(y|d) = N(0, %)

Z(Xl,Xg) = K(Xl,Xg) -+ |0'3

9 — -

K(x1,x2) = 0%e 2P i

(x1—x2)

* !

vertical-scale horizontal-scale

Parametric model

y(x) = f(x;0) + oye

e ~N(0,1)

159 /335



Higher dimensional input spaces

100

225 /335



% Gaussian Process Inference

Samples from GP Prior

Samples from GP Posterior




Gaussian Process Inference

Increase the length-scale /.

Samples from GP Prior Samples from GP Posterior

Output, f(x)

© Eric Xing @ CMU, 2005-2020 10 g
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ﬁ The Scalability Issue

» Computational bottlenecks for GPs:

» Inference: (Ky + o*I) ™'y for n x n matrix K.
» Learning: log |Ky + o°I|, for marginal likelihood evaluations needed to
learn 6.

» Both inference and learning naively require O (n®) operations and
O(n?) storage (typically from computing a Cholesky decomposition of
K). Afterwards, the predictive mean and variance cost O(n) and O(n?)
per test point.

© Eric Xing @ CMU, 2005-2020



V Inducing Point Methods

We can approximate GP through M < N inducing points f to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) = [ df [],, p(f»lf) p(f)

e SPGP covariance inverted in O(M?2N) < O(N?) = much faster




; Inducing Point Methods

0.8

0.6

0.4

0.2

Grids are tricky:

In high dimensions, one would need a LOT of inducing points to build a high-dimensional grid.
This might drastically affect efficiency.

Further reading:
Wilson, Dann, Nickisch (2015). Thoughts on Massively Scalable Gaussian Processes
Bauer, van der Wilk, Rasmussen (2016). Understanding Probabilistic Sparse Gaussian Process Approximations.
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% Proof of Theorem 1

o Proof by induction

o Base case: A= Y. The proof is trivial.

a Induction step.



where I; is the diagonal matrix with ones in the diagonal positions

% IndUCtion Step corresponding to elements of A =Y — A, and zeros everywhere else.

suppose inductively that the theorem holds whenever A has cardinality

less than k. Given A such that |/i| =k >0, let 7 be an element of Y

where i € A. Splitting blockwise according to the partition Y = {i} U "
Y — {i}, we can write L= ILZ

Li;+1 L
L+1I;= i ,
Toa ( Ls; Ly iy + Iy_{iy-a )

Li ‘
Ly

(2.8) 1 .
la= [0 I’y—A—{i}l

where L;; is the subcolumn of the i-th column of L whose rows corre-
spond to 7, and similarly for L. By multilinearity of the determinant,

then,
Ly Ig 1 0
det(L + I7) = [ 77 +
Y Ly Ly_gy+ Iy_giy-al L Ly_giy + Iy_gi}-a
(2.9)
= det(L + IAU{:'}) 2 det(Ly_{,'} + Iy—{i}—A)' (2.10)



/
det(ry, ..., i1, STi + T, Tig1y. .. Tn) =8 det(ry, ..., 71, TiyTiz1y. oy Tn)

y |I‘IdUCtiOn Step +det(ry,. .., Ti 1,75 Tisly-+-sTn)-

suppose inductively that the theorem holds whenever A has cardinality
less than k. Given A such that |A| =k > 0, let i be an element of Y
where i € A. Splitting blockwise according to the partition Y = {i} U

o o Li; Li
Y — {i}, we can write o Ly-{i}]
L+Iz= ( L +1 Li ) (2.8)
Li Ly} + Iy—(i}-a o
Ij B IO I'y—A—{l}]

where L;; is the subcolumn of the i-th column of L whose rows corre-
spond to %, and similarly for L. By multilinearity of the determinant,

then,
Ly Ig 1 0
det(L +I7) = [/% ~i ot
A Ly Ly_@y + Iy_y-al - L Ly—giy + Iy—{i}-4
(2.9)
= det(L + Im) + det(Ly_{,'} + Iy—{i}—A)' (210)



suppose inductively that the theorem holds whenever A has cardinality

y ) less than k. Given A such that |A| =k > 0, let ¢ be an element of )
Induction Step where i € 4.
> det(Ly) = det(L + I),

ACYCQ)Y
Li Lg; 1 0
det(L+1z)=|," " +
Y Ly + Iy—gay-al 1L Ly- + Iy—giy-a
(2.9)
= det(L + Im) . 2 det(Ly_{,'} + Iy—{i}—A)- (2.10)

Al = k |A| =K -k

JAU{i}]=K—-k+1
We can now apply the inductive hypothesis separately to each term,

giving |Au{i}| =k -1
det(L+1I5) = Y  det(Ly)+ Y  det(Ly) (2.11)
Au{i}cycy ACYCY—{i}
= Z det(Ly), (2.12)
ACYCY

where we observe that every Y either contains ¢ and is included only in

the first sum, or does not contain ¢ and is included only in the second
sum. . O



