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Brief Introduction and Motivation

• Understand the expressiveness of GNNs
• Spectral perspective

• Reformulate and analyze GNNs under one framework
• ChebNet, CayleyNet, GCN, GAT, and GIN
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Graph Attention Network

GCN layer: : parameters in layer l

: attention score
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Graph Isomorphism Network

GIN layer: : parameters in layer l
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Graph Laplacian

• A func'on that measures smoothness of a graph signal

Weighted adjacency matrix:

How to define convolution on 
graph signals?
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Spectral GNNs

• General formula of convolution in layer l (Bruna 2013)

• Non-parametric spectral GNN
• A full parameter matrix:

• Function bases, e.g. B-splines, Chebyshev polynomials, Cayley polynomials
• Formula:

• Base function of eigenvalues:

• Parameters:

: total # filters
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Spatial GNNs

• General formula

• GCN
• GIN
• GAT

: v-th row,
all features of node v

Note: GAT also falls into this framework, but its convolu>on support is different from layer to layer



Rewrite Spectral GNNs

• From

• To
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Review Nota+ons

: adjacency matrix

: diagonal degree matrix

: node features

: normalized Laplacian

: vector -> diagonal matrix : diagonal matrix -> vector

: adjacency matrix with self-loop

: node representa=ons in layer l

: degree matrix with self-loop

: eigendecomposition

: the i-th column (feature)
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• A func'on defined on the ver'ces of a graph

Node features:

Each column (feature) is a signal:



Review Fourier Transformation

• Classical Fourier transformation
• From time/space domain to frequency domain
• Formula:

• Graph Fourier transformation
• From vertex domain to graph spectral domain
• Formula:

• Inverse formula:

: l-th eigenvalue of
: l-th eigenvector of 



Review Convolution and Graph Fourier 
Transformation
• Generalize graph convolu1on using graph Fourier transforma1on
• Elementwise nota1on

• Matrix nota1on

• Further equals to 



Review Spa*al GNNs

• General formula

• GCN
• GIN
• GAT

: v-th row,
all features of node v

Note: GAT also falls into this framework, but its convolution support is different from layer to layer

is the attention score between node v and u



Review Spectral GNNs

• General spectral formula

• Non-parametric model

• Model with base functions

• To the general formula of spatial and spectral
: total # filters



Summary

• Spectral-designed GNNs: start with the definition of convolution and 
parametrize the filter function using a function basis
• Spatial-designed GNNs: collect information from neighbors
• General formula for both cases
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• A measure of magnitude and phase as a function of frequency

• Filters
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Frequency Profile

• A measure of magnitude as a function of eigenvalues
• For spectral-designed GNNs, the frequency profile is the frequency 

response.
• For spatial-designed GNNs,                    is not diagonal,  we further 

define the full frequency profile as 
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Analyze Frequency Profile of GCN

• GCN works as low-pass 
filter and does not cover 
the whole spectrum. 
• GCN is not able to learn 

relations that are 
represented by high-pass 
or band-pass filtering 

A regular 
circular line 
graph with 
1001 nodes 



Full Frequency Profile of GCN
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Analyze Frequency Profile of GIN

• GIN works as a filter 
covers a specific 
frequency 
corresponding to
• GIN is more expressive 

than GCN, but it still 
doesn’t cover the whole 
spectrum 
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Analyze Frequency Profile of GAT

• The convolution support of GAT depends on node features, which 
makes it hard to derive a closed form frequency profile formula, but 
we can still check the empirical result.

Randomly simulate 
a>en?on weights

Train weights of all 
a>en?on heads



Why Do GCN, GIN, and GAT Work Well?

• GCN, GIN and GAT obtain SOTA performance on reference node 
classification datasets such as Cora, CiteSeer and Pubmed. These 
good results are induced by the nature of the graphs to be processed. 
Indeed, citation network problems, which are heavily assortative, are 
inherently low-pass filtering problems. 
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• Pattern classification 
• Set up: generate images of random frequency patterns by a sinusoidal function 

with frequency in [1-5]. 0: frequency in [2-2.5] or [4-4.5]. 1: otherwise.
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• Pattern classification 
• Set up: generate images of random frequency patterns by a sinusoidal function 

with frequency in [1-5]. 0: frequency in [2-2.5] or [4-4.5]. 1: otherwise.

• Result



Limita&on of ChebNets?

• It is worth no+ng that, if we use enough convolu+on kernels, the 
frequency response of ChebNet kernels covers nearly all frequency 
profiles. However, these frequency responses are not specific to 
special bands of frequency. 
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ChebNets v.s. CayleyNets

• Community detection of on a synthetic graph with 15 communities
• CayleyNets are able to detect narrow frequency bands of importance, 

and thus have greater flexibility 

ChebNet

CayleyNet



Conclusion

• From a spectral perspective, current GNNs are limited
• To achieve better performance
• Use the most suitable model for a specific problem
• Develop more expressive model architecture
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