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l Gibbs Sampling and Practical MCMC



Recap
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l Last time we talked about sampling methods. Most
importantly the following two concepts.

l Monte Carlo estimation
l Write any probability query we care about as an expectation. Then use the

sample mean as an unbiased estimator.

l Importance sampling
l The idea is to sample the nonevidence variables directly. 
l We first find a proposal distribution Q over the nonevidence variables Z. Then we 

compute the importance weight P/Q for estimation.

Importance Sampling

Idea: evidence variables are fixed, so let’s just sample over non-evidence ones

Idea: use a proposal distribution over non-evidence variables
Q(Z = X \ E ) that we can e�ciently sample from and such that
P(Z = z ,E = e) > 0 ) Q(Z = z) > 0. Express P(E = e) as follows:

P(E = e) =
X

z

P(Z = z ,E = e)

=
X

z

P(Z = z ,E = e)
Q(Z = z)

Q(Z = z)

= EQ


P(Z = z ,E = e)

Q(Z = z)

�
= EQ [w(z)]

Generate samples from Q and estimate using P(E = e) using the following
Monte Carlo estimate:

P̂(E = e) =
1

T

TX

t=1

P(Z = z t ,E = e)

Q(Z = z t)
=

1

T

TX

t=1

w(z t)

where (z1, . . . , zT ) are sampled from Q.
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Recap
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l Error bound of importance sampling
l μ (think of it as proposal distribution Q) and ν (think of it as true distribution P) are 

two probability measures on a set X, ν is absolutely continuous with respect to μ
(i.e. μ(A) = 0 implies ν(A) = 0). ρ is the probability density of ν with respect to μ (ρ
= dv/dμ, which is roughly the probability ratio)

l Our target, the expectation we want to estimate

l Our estimation, result of the importance sampling



Recap
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l We want the proposal distribution Q to be close to the actual 
distribution P
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Limitations of IS
l Does not work well if the proposal Q(x) is very different from 

P(x)
l Yet constructing a Q(x) similar to P(x) can be difficult

l Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample!

l Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal?
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Markov Chain Monte Carlo
l MCMC algorithms feature adaptive proposals

l Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 
sampled, and x is the previous sample

l As x changes, Q(x’|x) can also change (as a function of x’)
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Importance sampling with 
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Metropolis-Hastings Algorithm
l Draws a sample x’ from Q(x’|x), where x is the previous sample
l The new sample x’ is accepted or rejected with some 

probability A(x’|x)
l This acceptance probability is

l A(x’|x) is like a ratio of importance sampling weights
l P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance 

weight for x
l We divide the importance weight for x’ by that of x
l Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) 

separately
l A(x’|x) ensures that, after sufficiently many draws, our samples will come 

from the true distribution P(x)
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Metropolis-Hastings Algorithm
1. Initialize starting state x(0), set t =0

2. Burn-in: while samples have “not converged”
l x=x(t)�t =t +1
l sample x* ~ Q(x*|x) // draw from proposal

l sample u ~ Uniform(0,1) // draw acceptance threshold

l If

l x(t) = x*  // transition

l else
l x(t) = x // stay in current state 

3. Take samples from P(x): Reset t=0, for t=1:N
l x(t+1) ß Draw sample (x(t))

4. Monte Carlo Estimation using these N final samples
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3

We reject because P(x’)/P(x2) is very small, 
hence A(x’|x2) is close to zero!



The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

Draw, accept x5

x0

Q(x3|x2)

x1 x2

x3
x4 x5

The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)!
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l Quick Recap
l Markov Chain Monte Carlo (MCMC)

l Theoretical Aspects of MCMC 

l Gibbs Sampling and Practical MCMC



Theoretical Aspects of MCMC

l Why are the MH samples guaranteed to be from P(x)?
l The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)?

l What are good, general-purpose, proposal distributions?
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l The MH algorithm has a “burn-in”/“warm-up” period. We throw 
away all the samples we get from this period. Why?



Markov Chains
l A Markov Chain is a sequence of random variables 

x(1),x(2),…,x(t) with the Markov Property

l is known as the transition kernel (just a matrix for 
discrete random variables) 

l The whole process is completely determined by the transition kernel and 
the initial state. The next state depends only on the preceding state 

l Note: the random variable x(i) can be vectors

l We define x(t) to be the t-th sample of all variables in our model

l We study homogeneous Markov Chains, in which the 
transition kernel                                is fixed with time
l To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state
21
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Markov Chains
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Initialize the simulation in one state (or randomly) x(0)

Randomly pick an outgoing edge (sample x(1) given x(0) =(1,1) )

x(1)

x(2)

x(3)

0.1

Markov Chain Sampling = 
simulating the dynamics of 
a Markov Chain

x(n)x(n-1)x(0) …
x(0)



Markov Chain Concepts
l To understand MCs, we need to define a few concepts:

l Probability distributions over states:              is a distribution over the 
state of the system x, at time t

l When dealing with MCs, we don’t think of the system as being in one 
state, but as having a distribution over states

l Here x represents all variables

l Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transit the entire distribution:

l At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’.
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Markov Chains
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Markov Chains
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Markov Chains
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Stationary Distribution
l is stationary if it does not change under the transition 

kernel

l A MC is reversible if there exists a distribution           such that 
the detailed balance condition is satisfied:

l This is saying under the distribution , the probability of x’→x is the 
same as x→x’

l Theorem: is a stationary distribution of the MC if it is 
reversible

27

)|( xxT ¢
)(xp

å ¢=¢
x

xxTxx )|()()( pp for all x’

)|()()|()( xxTxxxTx ¢=¢¢ pp

)(xp

)(xp

)(xp



Stationary Distribution
l is a stationary distribution of the MC.   Proof:

l The last line is the definition of a stationary distribution
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Why Does MH Work?
l Recall that we draw a sample x’ according to Q(x’|x), and then 

accept/reject according to A(x’|x).
l In other words, the transition kernel is

l We can prove MH is reversible, i.e. stationary distribution exists:
l Recall that

l Notice this implies the following:
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Why Does MH Work?

l Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have

l The last line is exactly the detailed balance condition
l In other words, the MH algorithm leads to a stationary distribution P(x)
l Recall we defined P(x) to be the true distribution of x
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Why Does MH Work?
l P(x) is its unique stationary distribution. 
l However, the mixing time, or how long it takes to reach

something close the stationary distribution, can’t be 
guaranteed.
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Gibbs Sampling
l Gibbs Sampling is a special case of the MH algorithm 
l Gibbs Sampling samples each random variable one at a time. 

Therefore, it has reasonable computation and memory 
requirements
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Gibbs Sampling Algorithm
l Suppose the model contains variables x1,…,xn

l Initialize starting values for x1,…,xn

l Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable xi in order:

1. Sample x ~ P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of 
xi given the current values of all other variables

2. Update xi ← x

l When we update xi, we immediately use its new value for 
sampling other variables xj
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Gibbs Sampling is MH
l The GS proposal distribution is

(x-i denotes all variables except xi)

l Applying Metropolis-Hastings with this proposal, we obtain:

GS is simply MH with a proposal that is always accepted
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Gibbs Sampling: An Example

l Consider the alarm network
l Assume we sample variables in the order B,E,A,J,M
l Initialize all variables at t = 0 to False
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t B E A J M
0 F F F F F
1
2
3
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Gibbs Sampling: An Example

l Sampling P(B|A,E) at t = 1: Using Bayes Rule,

l A=false, E=false, so we compute:
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t B E A J M
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Gibbs Sampling: An Example

l Sampling P(E|A,B): Using Bayes Rule,

l (A,B) = (F,F), so we compute the following, 
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Gibbs Sampling: An Example

l Sampling P(A|B,E,J,M): Using Bayes Rule,

l (B,E,J,M) = (F,T,F,F), so we compute:
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t B E A J M
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1 F T
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Gibbs Sampling: An Example

l Sampling P(J|A): No need to apply Bayes Rule

l A = F, so we compute the following, and sample
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t B E A J M
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Gibbs Sampling: An Example

l Sampling P(M|A): No need to apply Bayes Rule

l A = F, so we compute the following, and sample
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t B E A J M
0 F F F F F
1 F T F T
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Gibbs Sampling: An Example

l Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …
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t B E A J M
0 F F F F F
1 F T F T F
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Gibbs Sampling: An Example

l Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …

l And similarly for t = 3, 4, etc.
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t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
3 T F T F T
4 T F T F F



Practical Aspects of MCMC

l How do we know if our proposal Q(x’|x) is good or not?
l Monitor the acceptance rate
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Acceptance Rate

l Choosing the proposal Q(x’|x) is a tradeoff:
l “Narrow”, low-variance proposals have high acceptance, but take many 

iterations to explore P(x) fully because the proposed x are too close
l “Wide”, high-variance proposals have the potential to explore much of 

P(x), but many proposals are rejected which slows down the sampler

l A good Q(x’|x) proposes distant samples x’ with a sufficiently 
high acceptance rate
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Acceptance Rate

l Acceptance rate is the fraction of samples that MH accepts.
l General guideline: proposals should have ~0.5 acceptance rate [1]

l Gaussian special case:
l If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is 

~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]
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[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Practical Aspects of MCMC

l How do we know if our proposal Q(x’|x) is any good?
l Monitor the acceptance rate

l How do we know when to stop burn-in?
l Plot the sample values vs time
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Sample Values vs Time

l Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains)
l If the chains are well-mixed (left), they are probably converged
l If the chains are poorly-mixed (right), we should continue burn-in

l In practice, we usually start with multiple chains
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Well-mixed chains Poorly-mixed chains



Summary
l Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x)

l Metropolis-Hastings allows you to specify any proposal Q(x’|x)
l But choosing a good Q(x’|x) is not easy

l Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)
l Acceptance rate is always 1!
l But remember that high acceptance usually entails slow exploration
l In fact, there are better MCMC algorithms for certain models

l Knowing when to halt burn-in is an art
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Thank you!
Q & A
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