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Recap

e Last time we talked about sampling methods. Most
importantly the following two concepts.

e Monte Carlo estimation

e Write any probability query we care about as an expectation. Then use the
sample mean as an unbiased estimator.

e Importance sampling
e The idea is to sample the nonevidence variables directly.

e We first find a proposal distribution Q over the nonevidence variables Z. Then we
compute the importance weight P/Q for estimation.

Generate samples from @ and estimate P(E = e) using the following
Monte Carlo estimate:
A P(Z=2zE=e)
P =
T Z QZ=zt) T Z

where (z%,...,z") are sampled from Q.



Recap

e Error bound of importance sampling

M (think of it as proposal distribution Q) and v (think of it as true distribution P) are
two probability measures on a set X, v is absolutely continuous with respect to p
(i.,e. u(A) = 0 implies v(A) = 0). p is the probability density of v with respect to p (p
= dv/du, which is roughly the probability ratio)

Our target, the expectation we want to estimate I(f / f(y)dv(y

Our estimation, result of the importance sampling I,,(f) := %Z f(Xi)p(X

Theorem 1.1. Let X, u, v, p, f, I(f) and L,(f) be as above. LetY be
an X -valued random variable with law v. Let L = D(v||u) be the Kullback-
Lewbler divergence of pu from v, that is,

L=D(wlln) = [ pl@)ogpla)dn(z) = [ logp(w)iv(y) = Elogp(Y)).
X X
Let || fllz2@) := (E(f(Y)?)2. If n = exp(L +t) for some t > 0, then

E|L(f) = I(f)| < Ifll 2w (e* + 2¢/B(log p(Y) > L+ /2)) .




Recap

e We want the proposal distribution Q to be close to the actual
distribution P

that under a certain condition that often holds in practice, the sample size n re-
quired for |I,(f) — I(f)| to be close to zero with high probability is roughly
exp(D(v || w)) where D(v || ) is the Kullback-Leibler divergence of p from v.
More precisely, it says that if s is the typical order of fluctuations of log o (Y)
around its expected value, then a sample of size exp(D(v || n) + O(s)) is suffi-
cient and a sample of size exp(D(v || u) — O(s)) is necessary for |1,(f) — I (f)|
to be close to zero with high probability. The necessity is proved by considering

the worst possible f, which as it turns out, is the function that is identically equal
to 1.

Theorem 1.1. Let X, u, v, p, f, I(f) and L,(f) be as above. LetY be
an X -valued random variable with law v. Let L = D(v||u) be the Kullback-
Lewbler divergence of u from v, that is,

L=DWln) = |

p(2) log p(z)du(z) = / log pl(y)d(y) = E(log p(Y))
X

X
Let ||f||L2(u) = (IE(f(Y)2))1/2. If n = exp(L +t) for somet > 0, then

E|L(f) = I(H)] < If 2 (e7* +2¢/Plog p(Y) > L +1/2)) .
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Limitations of IS

e Does not work well if the proposal Q(x) is very different from
P(x)
e Yet constructing a Q(x) similar to P(x) can be difficult

e Making a good proposal usually requires knowledge of the analytic form
of P(x) — but if we had that, we wouldn’t even need to sample!

e Intuition: instead of a fixed proposal Q(x), what if we could use
an adaptive proposal?



Markov Chain Monte Carlo

e MCMC algorithms feature adaptive proposals

e Instead of Q(x’), they use Q(x’|x) where X’ is the new state being
sampled, and x is the previous sample

e As x changes, Q(x'|x) can also change (as a function of x’)

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x proposal Q(x’|x)

P(x
Q(x) ) Q(3[x2) Qx4|x3)




Metropolis-Hastings Algorithm

e Draws a sample x’ from Q(x’|x), where x is the previous sample

e The new sample x' is accepted or rejected with some
probability A(X’|x)

e This acceptance probability is

A(x.x):mm[l P(X')Q(XIX')J

" P(x)Q(x'] x)
e A(X'|x) is like a ratio of importance sampling weights

P(x')/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance
weight for x

We divide the importance weight for x’ by that of x

Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x)
separately

e A(X'|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x)



Metropolis-Hastings Algorithm

1. Initialize starting state X9, set t =0

2. Burn-in: while samples have “not converged”
o x=xU, t=t+1 \
e sample x* ~ QX x*|x) // draw from proposal
e sample v~ Uniform(0,1) // draw acceptance threshold

w1y _ o[ PF)O(x | x¥) Function
o [hws ATy =mn (1’ P(x)Q(x*|x)] > Draw sample (x(t))

XU = x* [/ transition

e else
XY = x [ stay in current state )

3. Take samples from P(x): Reset t=0, for t=1:N
e Xx(t+1) € Draw sample (x(t))

4.  Monte Carlo Estimation using these N final samples

10



The

A x) = min[l, P(r)Q(x ")
P(NQ(x'| )

|

MH Algorithm

e Example:

Initialize x©)

Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
We're trying to sample from a bimodal distribution P(x)

11



The MH Algorithm

e Example:

A(x'|x) = mln[

| PO | x)

~P(x)0(x' %)

|

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)

e We’'re trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x'
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The MH Algorithm

e Example:

A(x'|x) = mln[

| PO | x)

~P(x)0(x' %)

|

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)

e We’'re trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x'
Draw, accept x?
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| PO ] x')}
P0G x)

A(x'|x) = mln[

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©

Draw, accept x'

Draw, accept x? P(x)
Draw but reject; set x3=x2

3
x! x0 x2 x (rejected)
3
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The MH Algorithm

e Example:

| PO ] x'))
P0G x)

A(x'|x) = mln[

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©

Draw, accept x’

Draw, accept x?

Draw but reject; set x3=x2

We reject because P(x’)/P(x?) is very small,
hence A(X’|x?) is close to zero!

P(x)

3
x! x0 x2 x (rejected)
3
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| PO ] x'))
P0G x)

A(x'|x) = mln[

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x’

Draw, accept x? P(x)
Draw but reject; set x3=x2

Draw, accept x*
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A(x'x):min[l P(X')Q(XIX')]

~P(x)0(x' %)

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x’

Draw, accept x? P(x)
Draw but reject; set x3=x2

Draw, accept x*
Draw, accept x°
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~P(x)0(x' %)

A(x.x):mm[l P(X')Q(XIX')j

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

The adaptive proposal Q(x’|x) allows

B\itialize x© . us to sample both modes of P(x)!
raw, accept x

Draw, accegt X2 P(x)

Draw but reject; set x3=x2

Draw, accept x*

Draw, accept x°

18



Agenda

e Quick Recap

e Markov Chain Monte Carlo (MCMC)
e Theoretical Aspects of MCMC —

e Gibbs Sampling and Practical MCMC

19



Theoretical Aspects of MCMC

e The MH algorithm has a “burn-in"/*warm-up” period. We throw
away all the samples we get from this period. Why?

e Why are the MH samples guaranteed to be from P(x)?

e The proposal Q(x’|x) keeps changing with the value of x; how do we
know the samples will eventually come from P(x)?

e What are good, general-purpose, proposal distributions?

20



Markov Chains

e A Markov Chain is a sequence of random variables

xM x@), ... x® with the Markov Property
e O~O~0~O

PO =x|xW . x ) =P =x[x"Y)  x@ e xen o

o P(x(t) =X | X(H)) is known as the transition kernel (just a matrix for
discrete random variables)

e The whole process is completely determined by the transition kernel and
the initial state. The next state depends only on the preceding state

e Note: the random variable x() can be vectors
We define x® to be the t-th sample of all variables in our model

e We study homogeneous Markov Chains, in which the
transition kernel p(x' = x| x"™ = x) is fixed with time

e Toemphasize this, we will call the kernel (" | y) , where x is the
previous state and x’ is the next state

21



Markov Chains

Markov Chain Sampling =
simulating the dynamics of
a Markov Chain

0-0-O-0O

x(0) . x(n-1) x(n)

Randomly pick an outgoing edge (sample x{") given x( =(1,1) )

Initialize the simulation in one state (or randomly) x(© ’s



Markov Chain Concepts

e To understand MCs, we need to define a few concepts:

e Probability distributions over states: 7' (x) is a distribution over the
state of the system x, at time t

When dealing with MCs, we don’t think of the system as being in one
state, but as having a distribution over states

Here x represents all variables

e Transitions: recall that states transition from x® to x*1) according to the
transition kernel T(x'|x) . We can also transit the entire distribution:

(=), 7 ()T (x| x)
At time t, state x has probability mass 1((x). The transition probability
redistributes this mass to other states x'.

O~O~0—0

x(O) - x(t) x(t+1)

s (x0) Al (x) ) (x")
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Markov Chains

) =T (x'=(1,0) | x=(0,1))

¥ (x)

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

Initialize the simulation in one state x(® o



Markov Chains

) =T (x’ = (1,0) | x=(0,1) )

0.5 0.5

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

Initialize the simulation in one state x(® -



Markov Chains

) =T (x’ = (1,0) | x=(0,1) )

o) 0.4 0.55
7 (x) 0.05

|

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

stationary if it does not change

Initialize the simulation in one state x(® -



Stationary Distribution

e m(x) is stationary if it does not change under the transition
kernel T(x'|x)

r(x')=) ()T (x'|x) forallx

e A MC is reversible if there exists a distribution 7(x) such that
the detailed balance condition is satisfied:
7(xNT (x| x)=m(x)T(x"|x)
e This is saying under the distribution 7 (x), the probability of X —x is the
same as Xx—Xx’

e Theorem: 7(x)is a stationary distribution of the MC if it is
reversible
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Stationary Distribution

e 7(x)is a stationary distribution of the MC. Proof:

7(xXNT (x| x")Y=72(x)T(x"| x)
D (T (x[x) =D, 7(x)T(x'|x)
7(x)), T(x|x)=> z(x)T(x'|x)
w(x) =) 7(x)T(x'|x)

e The last line is the definition of a stationary distribution

28



Why Does MH Work?

e Recall that we draw a sample x’ according to Q(x’|x), and then
accept/reject according to A(x’|x).
e In other words, the transition kernel is

T'(x'[x)=0(x'[x)4(x'| x)

e We can prove MH is reversible, i.e. stationary distribution exists:

e Recall that | e P(x’)Q(x|x’)
A(”)‘mmﬁl’ P(x)Q(x'IX)]

e Notice this implies the following:

£ A x) <] then LOOCOTIN) s A(x |2 =1
P(x")Q(x|x)
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Why Does MH Work?

£ A1) <1 then LOQETO 1 thus A(x[x) =1
P(x")O(x | x")

e Now suppose A(X’|x) <1 and A(x|x’) = 1. We have
A(x'] x) = P(X’)Q(x’l x)
P(x)O(x" | x)
P(x)Q(x" [ x)A(x'| x) = P(x")O(x | x')
P(x)Q(x"[x)A(x'| x) = P(x")O(x | x") A(x | x")
P(x)T(x"|x) = P(x)T (x| x')
e The last line is exactly the detailed balance condition
e In other words, the MH algorithm leads to a stationary distribution P(x)

e Recall we defined P(x) to be the true distribution of x

33



Why Does MH Work?

e P(x) is its unique stationary distribution.

e However, the mixing time, or how long it takes to reach
something close the stationary distribution, can’t be

guaranteed.
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Gibbs Sampling

e Gibbs Sampling is a special case of the MH algorithm

e Gibbs Sampling samples each random variable one at a time.
Therefore, it has reasonable computation and memory
requirements
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Gibbs Sampling Algorithm

e Suppose the model contains variables x,...,X,
e [nitialize starting values for xy,...,Xx,

e Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable x; in order:

Sample x~ P(x; | X4, ..., Xi-1, Xi+1, ---, Xn), I.€. the conditional distribution of
X; given the current values of all other variables

Update x; « X

e \When we update x;, we immediately use its new value for
sampling other variables x;

39



Gibbs Sampling is MH

e The GS proposal distribution is
Q(xi,ax—i ‘ xiax—i) = P(xi' ’ X—i)
(x.; denotes all variables except x;)

o Applying Metropolis-Hastings with this proposal, we obtain:

A(x;ax_l-|xi,x_l.):mjn ID(XZ’X )Q('xlax xi9x—i)
P(XZ,X )Q(XZ,X_Z Xl.,X_.)

=min[1, 1f><x;,x,-)1f><xix»j:min | PG X )P(x)P(x, | )j
P(x,,x_)P(x]|X_,) "P(x, |x_)P(x_)P(x]] X))
= min (1,1)=1

GS is simply MH with a proposal that is always accepted

40



Gibbs Sampling: An Example

P(E)

F F F F

F

mHT A=
¥
&

B~ WO N -~ O

-

Al PD) A PO
T | 90

o 70
I‘ .05 @ ! ‘()I

e Consider the alarm network
e Assume we sample variables in the order B,E,A,J,M

e Initialize all variables att = 0 to False
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Gibbs Sampling: An Example

P(E)

o F F F F F

mHT A=
¥
&

A WO N -

A P(J)

. A P(M)
T 90

; % .70
I. .05 @ ! ‘()I

-

e Sampling P(B|A,E) att = 1: Using Bayes Rule,
P(B|A,E)x P(A|B,E)P(B)

e A=false, E=false, so we compute:

P(B=T|A=F,E=F)cx (0.06)(0.001) = 0.00006
P(B=F|A=F,E =F) o (0.999)(0.999) = 0.9980
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Gibbs Sampling: An Example

P(E)

o F F F F F
FooT

mHT A=
¥
&

-

Al P AT PO
T | 90

4 70
I : .05 @ ! 2 () I

e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(F)
e (AB)=(F,F), so we compute the following,
P(E=T|A=F,B=F)x(0.71)(0.02) =0.0142
P(E=F|A=F,B=F)«(0.999)(0.998)=0.9970
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Gibbs Sampling: An Example

P(E)

o F F F F F
F T F

mHT A=
¥
£

™=

Al P AT PO
T | 90

4 70
I : -05 @ ! 2 () I

e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|B,E,J,M)x P(J|A)P(M |A)P(A4|B.E)
e (B,E,JM)=(F,T,F,F), sowe compute:
P(A=T|B=F,E=T,J=F,M =F)« (0.1)(0.3)(0.29) = 0.0087
P(A=F|B=F,E=T,J=F,M =F)«x(0.95)(0.99)(0.71) =0.6678
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Gibbs Sampling: An Example

P(E)
F F F F F
F T F T

mHT A=
¥
&

B~ WO N -~ O

-

Al PD) AT PO
T | 90

4 70
I : .05 @ ! 2 () I

e Sampling P(J|A): No need to apply Bayes Rule

e A =F, sowe compute the following, and sample
P(J=T|A=F)x0.05
P(J=F|A=F)x0.95
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Gibbs Sampling: An Example

P(E)
F F F F F
F T F T F

mHT A=
¥
&

B~ WO N -~ O

-

Al PD) AT PO
T | 90

4 70
I : .05 @ ! 2 () I

e Sampling P(M|A): No need to apply Bayes Rule

e A =F, sowe compute the following, and sample
PM=T|A=F)«x0.01
PM=F|A=F)x0.99
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Gibbs Sampling: An Example

P(E)
F F F F F
F T F T F
F T T T T

mHT A=
¥
&

B~ WO N -~ O

Al P AT PO
T | 90
4 70

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

-
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Gibbs Sampling: An Example

P(E)

mHT A=
¥
&

A WO N -~ O
— < ™M M M
m M o < T
- 4 4
m m 4 -
M 4 4 m T

-

A PO T P00
T| 9

i 70
I‘ .05 @ 1 ()I

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

e And similarly fort = 3, 4, etc.
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Practical Aspects of MCMC

e How do we know if our proposal Q(x’|x) is good or not?
e Monitor the acceptance rate
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Choosing the proposal Q(x'|x) is a tradeoff:

e “Narrow”, low-variance proposals have high acceptance, but take many
iterations to explore P(x) fully because the proposed x are too close

e “Wide”, high-variance proposals have the potential to explore much of
P(x), but many proposals are rejected which slows down the sampler

e A good Q(x'|x) proposes distant samples x’ with a sufficiently
high acceptance rate
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Acceptance rate is the fraction of samples that MH accepts.
e General guideline: proposals should have ~0.5 acceptance rate [1]

e (Gaussian special case:

e If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is
~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Practical Aspects of MCMC

e How do we know if our proposal Q(x’|x) is any good?
e Monitor the acceptance rate

e How do we know when to stop burn-in?
e Plot the sample values vs time
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Sample Values vs Time

-0.195

Well-mixed chains Poorly-mixed chains
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Monitor convergence by plotting samples (of r.v.s) from
multiple MH runs (chains)

e If the chains are well-mixed (left), they are probably converged
e If the chains are poorly-mixed (right), we should continue burn-in

In practice, we usually start with multiple chains
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Summary

e Markov Chain Monte Carlo methods use adaptive proposals
Q(x’|x) to sample from the true distribution P(x)

e Metropolis-Hastings allows you to specify any proposal Q(x’|x)
e But choosing a good Q(x’|x) is not easy

e Gibbs sampling sets the proposal Q(x’|x) to the conditional
distribution P(x’|x)
e Acceptance rate is always 1!
e But remember that high acceptance usually entails slow exploration
e Infact, there are better MCMC algorithms for certain models

e Knowing when to halt burn-in is an art
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Thank you!
Q&A




