

Ermon, Yumeng Zhang (Stanford), and David Sontag (MIT)

# Agenda

- Probability Review
- Approximate Inference
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)
    - Theoretical Aspects of MCMC
  - Gibbs Sampling and Practical MCMC

# Agenda

Probability Review



- Approximate Inference
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)
    - Theoretical Aspects of MCMC
  - Gibbs Sampling and Practical MCMC

#### Sets

A set is just a collection of elements denoted e.g.,

 $S = \{s_1, s_2, s_3\}, R = \{r : \text{some condition holds on } r\}.$ 

- Intersection: the elements that are in both sets:  $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Union: the elements that are in either set, or both:  $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- **Complementation**: all the elements that aren't in the set:  $A^{C} = \{x : x \notin A\}.$



#### Sets

- A sequence of sets A<sub>1</sub>, A<sub>2</sub>... is called **pairwise disjoint** or **mutually exclusive** if for all *i* ≠ *j*, A<sub>i</sub> ∩ A<sub>j</sub> = {}.
- ► If the sequence is pairwise disjoint and U<sup>∞</sup><sub>i=1</sub> A<sub>i</sub> = S, then the sequence forms a **partition** of S.

## What is **Probability**

• When we talk about probability, we are actually assuming there is a probability space.

The probability space is discribed by the 3-tuple  $(\Omega, \mathcal{F}, \mathbb{P})$ :

- Sample space  $\Omega =$  "Set of all possible outcome  $\omega$ 's";
- σ-field F = collection of "events" = subsets of Ω;
   Given event A ∈ F, A occurs if and only if ω ∈ A;
- Probability  $\mathbb{P}: \mathcal{F} \rightarrow [0,1]$  maps events to real [0,1]-values.
- Example of rolling a die

$$\begin{split} &\Omega = \{1, 2, 3, 4, 5, 6\} \\ &\mathcal{F} = 2^{\Omega} = \{\{1\}, \{2\} \dots \{1, 2\} \dots \{1, 2, 3\} \dots \{1, 2, 3, 4, 5, 6\}, \{\}\} \\ &P(\{1\}) = P(\{2\}) = \dots = \frac{1}{6} \text{ (i.e., a fair die)} \\ &P(\{1, 3, 5\}) = \frac{1}{2} \text{ (i.e., half chance of odd result)} \\ &P(\{1, 2, 3, 4, 5, 6\}) = 1 \text{ (i.e., result is "almost surely" one of the faces).} \end{split}$$

## **Axioms of Probability**

• Three axioms and corresponding

A set of conditions imposed on probability measures (due to Kolmogorov)

- ▶  $P(A) \ge 0, \forall A \in \mathcal{F}$
- $P(\Omega) = 1$
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$  where  $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$  are pairwise disjoint.

These quickly lead to:

- $P(A^{C}) = 1 P(A)$  (since  $P(A) + P(A^{C}) = P(A \cup A^{C}) = P(\Omega) = 1$ ).
- ►  $P(A) \leq 1$  (since  $P(A^{C}) \geq 0$ ).
- $P(\{\}) = 0$  (since  $P(\Omega) = 1$ ).

### **Conditional Probabilities**



For events  $A, B \in \mathcal{F}$  with P(B) > 0, we may write the **conditional probability of A given B**:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

Interpretation: the outcome is definitely in B, so treat B as the entire sample space and find the probability that the outcome is also in A.

#### Independence

Two events A, B are called **independent** if  $P(A \cap B) = P(A)P(B)$ . When P(A) > 0 this may be written P(B|A) = P(B) (why?)

Two events A, B are called **conditionally independent given** C when  $P(A \cap B|C) = P(A|C)P(B|C)$ .

When P(A) > 0 we may write P(B|A, C) = P(B|C)

The difference is important. Later, we will need this to understand the Markov Chain.

### **Bayes' Rule**

Using the chain rule we may see:

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

Rearranging this yields **Bayes' rule**:

$$P(B|A) = rac{P(A|B)P(B)}{P(A)}$$

Often this is written as:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}$$

Where  $B_i$  are a partition of  $\Omega$  (note the bottom is just the law of total probability).

#### **Random Variables**

• A random variable X is just a function:  $X : \Omega \to \mathbb{R}^d$ 

Intuitively, a random variable is a variable that takes on its values by chance. (Usually denoted by capital letters X, Y, Z...)

Can be described by the **probability mass function**   $\mathbb{P}(X = x_i) = p_i$  for i = 1, 2, ...e.g. Bernoulli, Binomial, Geometric, Poisson, etc. Can be described by the **probability density function**   $\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx.$ e.g. Exponential, Normal, Beta, etc.

Singular: Can not be described by either. Not useful.

Nonetheless, a random variable can always be determined by its cumulative distribution function  $F(x) = \mathbb{P}(X \le x)$ .

# **Joint Distributions**

We may consider multiple functions of the same sample space, e.g.,  $X(\omega) = 1_A(\omega), Y(\omega) = 1_B(\omega)$ :



May represent the **joint distribution** as a <u>table</u>:

|     | X=0  | X=1  |
|-----|------|------|
| Y=0 | 0.25 | 0.15 |
| Y=1 | 0.35 | 0.25 |

We write the joint PMF or PDF as  $f_{X,Y}(x,y)$ 

### **Independent Distributions**

We talked about independent events. Now we can extend the same idea to random variables

Two random variables are called **independent** when the joint PDF factorizes:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

When RVs are independent and identically distributed this is usually abbreviated to "i.i.d."

Relationship to independent events: X, Y ind. iff

 $\{\omega: X(\omega) \le x\}, \{\omega: Y(\omega) \le y\}$  are independent events for all x, y.



## **Marginalizing and Conditioning**

 Given a joint distribution of more than one random variable, we can find the distribution of one random variable

$$P(X = x) = \sum_{y} P(X = x, Y = y) = \sum_{y} P(X = x | Y = y) P(Y = y)$$

• We can also find the distribution of one random variable conditioning on the other random variable

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{\text{joint pmf}}{\text{marginal pmf}}$$

#### **Expectation and Variance**

We may consider the **expectation** (or "mean") of a distribution:

$$E(X) = \begin{cases} \sum_{x} x f_X(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ is continuous} \end{cases}$$

We may consider the **variance** of a distribution:

$$Var(X) = E(X - EX)^2$$

This may give an idea of how "spread out" a distribution is.

## **Markov Inequality**

• Markov inequality: If  $X \ge 0$ , then for any  $c \ge 0$ ,

$$\mathbb{P}(X \ge c) \leqslant \frac{\mathbb{E}X}{c}.$$

• This inequality is telling us a random variable can't be too different from its mean. Note: we know nothing about the distribution of X!

## Law of Large Numbers (LLN)

• LLN describes the asymptotic behavior of the sample mean.

Recall our variable  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ . We may wonder about its behavior as  $n \to \infty$ .

We had: 
$$E\bar{X}_n = \mu$$
,  $Var(\bar{X}_n) = \frac{\sigma^2}{n}$ 

Distribution appears to be "contracting:" as n increases, variance is going to 0.

The weak law of large numbers:

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|<\epsilon)=1$$

In English: choose  $\epsilon$  and a probability that  $|\bar{X}_n - \mu| < \epsilon$ , I can find you an *n* so your probability is achieved.

# **Central Limit Theorem (CLT)**

 Similarly to LLN, CLT also describes the asymptotic behavior of the sample mean.

The distribution of  $\bar{X}_n$  also converges weakly to a Gaussian,

$$\lim_{n \to \infty} \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Simulated *n* dice rolls and took average, 5000 times:



# LLN v.s. CLT

• How are these two different?

Recall our variable  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$   $E\bar{X}_n = \mu$ ,

$$\bar{z} \bar{X}_n = \mu, \mathsf{Var}(\bar{X}_n) = rac{\sigma^2}{n}$$

• As n goes to infinity

• LLN: 
$$P(|ar{X}_n-\mu|<\epsilon)=1$$

• CLT: 
$$\frac{X_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

- The converges rates are different!
- Another way to understand it is that we standardized the random variable first before taking n to infinity.

## **Markov Chains**

• We will see it when we get to the MCMC part later.

# Agenda

- Probability Review
- Approximate Inference



- Monte Carlo and Importance Sampling
- Markov Chain Monte Carlo (MCMC)
  - Theoretical Aspects of MCMC
- Gibbs Sampling and Practical MCMC

## **Probabilistic Inference**

- Many tasks actually boil down to inference tasks, and we can further reduce them to answering probability queries.
  - The notation we will use through out this talk
    - some random variables X, some evidence variables E (variables we have observed), all the unobserved variables Z = X – E.
  - Some questions we can ask
    - Marginal probability: what is P(E=e)?
    - Conditional/Posterior probability: what is P(X\_i=x | E=e)?
- Examples:
  - All the classification problems can fit in to this framework, e.g. node classification on graphs, P(label of X | labels of neighbours of X)?
  - Language model: P(X3="mathematics" | X1="I", X2="like")?

# Why Approximate Inference?

- For real world problems with many random variable, doing exact inference is computationally intractable.
- Approximation is useful:
  - Suppose the ground truth is P(Z=z | E=e)=0.29292, and the approximate inference yields P(Z=z | E=e) = 0.3. This might be good enough for many applications.

# **Approximate Inference**

- Two main families of approximate inference algorithms:
  - Variational algorithms
  - Monte-Carlo sampling methods
- The basic idea of sampling method is to approximate a probability distribution using a small number of states that are "representative" of the entire probability distribution

# Agenda

- Probability Review
- Approximate Inference
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)
    - Theoretical Aspects of MCMC
  - Gibbs Sampling and Practical MCMC



### How to generate a sample?

- Given a set of variables X = {X<sub>1</sub>,..., X<sub>n</sub>}, a sample x = (x<sub>1</sub>,..., x<sub>n</sub>) is an assignment to all variables (also called an instantiation or a state)
- How to randomly generate a sample/state according to probabilities assigned by P(x)?
- Algorithm to draw a sample from a *univariate* distribution P(X). A sample is just an assignment to X. Domain of X = {a<sup>0</sup>,..., a<sup>k-1</sup>}
  - **1** Divide a real line [0, 1] into k intervals such that the width  $\theta_j$  of the j-th interval is equal to  $P(X = a^j)$
  - 2 Draw a random number  $r \in [0, 1]$
  - 3 Determine the region j in which r lies. Output  $a^{j}$



#### **Monte Carlo Estimation**

Express the quantity of interest as the expected value of a random variable.

$$E_{x\sim P}[g(x)] = \sum_{x} g(x)P(x)$$

- Generate T samples x<sup>1</sup>,..., x<sup>T</sup> from the distribution P with respect to which the expectation was taken.
- Stimate the expected value from the samples using:

$$\hat{g}(\mathbf{x}^1, \cdots, \mathbf{x}^T) \triangleq rac{1}{T} \sum_{t=1}^T g(\mathbf{x}^t)$$

where  $\mathbf{x}^1, \ldots, \mathbf{x}^T$  are independent samples from P. Note:  $\hat{g}$  is a random variable. Why?

#### **Properties of the Monte Carlo**

• Unbiased:

$$E_P[\hat{g}] = E_P[g(x)]$$

• Convergence: By law of large numbers

$$\hat{g} = rac{1}{T} \sum_{t=1}^{T} g(x^t) 
ightarrow \mathcal{E}_{\mathcal{P}}[g(x)] ext{ for } T 
ightarrow \infty$$

• Variance:

$$V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)
ight] = rac{V_P[g(x)]}{T}$$

Thus, variance of the estimator can be reduced by increasing the number of samples. We have no control over the numerator when P is given. How quickly does the estimate converge to the true expectation?

# **Rejection Sampling**



- Suppose you want to sample points uniformly within the circle
- You have access to a uniform random generator in [-1,1]
- Sample  $x \sim \mathcal{U}[-1, 1]$
- Sample  $y \sim \mathcal{U}[-1, 1]$
- If  $x^2 + y^2 \le 1$ , accept the sample. Otherwise reject it and try again.

### **Rejection Sampling**

• Express P(E = e) as an expectation:

$$P(E = e) = \sum_{x} \delta_e(x) P(x) = E_P[\delta_e(x)]$$

where  $\delta_e(x)$  is an indicator function which is 1 if x is consistent with the evidence E = e and 0 otherwise.

- Generate samples
- Monte Carlo estimate  $\hat{g}(x_1, \cdots, x_T) = \frac{1}{T} \sum_{t=1}^T g(x^t)$ :

 $\hat{P}(E = e) = \frac{\text{Number of samples that have } E = e}{\text{Total number of samples}}$ 

• Issues: If P(E = e) is very small (e.g.,  $10^{-55}$ ), nearly all samples will be rejected.

• Note: even if 
$$P(E = e)$$
 is extremely small,  
 $p(X = x | E = e) = p(X = x, E = e)/p(E = e)$  can be large.

### **Failure Case**



- Suppose you want to sample points uniformly within the circle
- You have access to a uniform random generator in [-1,1]
- Sample  $x \sim \mathcal{U}[-1, 1]$ , sample  $y \sim \mathcal{U}[-1, 1]$
- If (x, y) is in the circle, accept the sample. Otherwise reject it and try again.
- Can be extremely inefficient if the circle is small
- A conditional probability is like the ratio between the red vs. gray circle areas. Can we sample directly inside the gray circle?

#### **Importance Sampling**

- Idea: evidence variables are fixed, so let's just sample over non-evidence ones
- Idea: use a proposal distribution over non-evidence variables
   Q(Z = X \ E) that we can efficiently sample from and such that
   P(Z = z, E = e) > 0 ⇒ Q(Z = z) > 0. Express P(E = e) as follows:

$$P(E = e) = \sum_{z} P(Z = z, E = e)$$
  
= 
$$\sum_{z} P(Z = z, E = e) \frac{Q(Z = z)}{Q(Z = z)}$$
  
= 
$$E_Q \left[ \frac{P(Z = z, E = e)}{Q(Z = z)} \right] = E_Q[w(z)]$$

• Generate samples from Q and estimate P(E = e) using the following Monte Carlo estimate:

$$\hat{P}(E=e) = rac{1}{T} \sum_{t=1}^{T} rac{P(Z=z^t, E=e)}{Q(Z=z^t)} = rac{1}{T} \sum_{t=1}^{T} w(z^t)$$

where  $(z^1, \ldots, z^T)$  are sampled from Q.

### **Ideal Proposal Distribution**

- For optimum performance, the proposal distribution Q should be as close as possible to P(Z|E = e).
  - When Q = P(Z|E = e), the weight of every sample is P(E = e)!

$$w(z^{t}) = \frac{P(Z = z^{t}, E = e)}{Q(Z = z^{t})} = \frac{P(Z = z^{t}, E = e)}{P(Z = z^{t} | E = e)}$$
$$= \frac{P(Z = z^{t}, E = e)P(E = e)}{P(Z = z^{t}, E = e)}$$
$$= P(E = e)$$

- Weight does not depend on z<sup>t</sup>
- One sample would be sufficient!

#### **Issue of Importance Sampling**

- (Un-normalized) IS is not suitable for estimating  $P(X_i = x_i | E = e)$ .
- One option: Estimate the numerator and denominator by IS.

$$\hat{P}(X_i = x_i | E = e) = \frac{\hat{P}(X_i = x_i, E = e)}{\hat{P}(E = e)}$$

- This ratio estimate can be inaccurate because errors in the numerator and denominator may be cumulative.
  - For example, if the numerator is an under-estimate and the denominator is an over-estimate.

#### **Normalized Importance Sampling**

- Partition the variables into evidence E and non-evidence Z
- Given an indicator function  $\delta_{x_i}(z)$  (which is 1 if z is consistent with  $X_i = x_i$  and 0 otherwise), we can write  $P(X_i = x_i | E = e)$  as:

$$P(X_i = x_i | E = e) = \frac{P(X_i = x_i, E = e)}{P(E = e)} = \frac{\sum_z \delta_{x_i}(z) P(Z = z, E = e)}{\sum_z P(Z = z, E = e)}$$

 Now we can use the same Q and same samples from it to estimate both the numerator and the denominator.

$$\hat{P}(X_i = x_i | E = e) = \frac{\frac{1}{T} \sum_{t=1}^{T} \delta_{x_i}(z^t) w(z^t)}{\frac{1}{T} \sum_{t=1}^{T} w(z^t)}$$

# Agenda

- **Probability Review**
- **Approximate Inference** 
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)



- **Theoretical Aspects of MCMC**
- **Gibbs Sampling and Practical MCMC**

# **Limitations of IS**

- Does not work well if the proposal Q(x) is very different from P(x)
- Yet constructing a Q(x) similar to P(x) can be difficult
  - Making a good proposal usually requires knowledge of the analytic form of P(x) – but if we had that, we wouldn't even need to sample!
- Intuition: instead of a fixed proposal Q(x), what if we could use an adaptive proposal?

#### Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
  - Instead of Q(x'), they use Q(x'|x) where x' is the new state being sampled, and x is the previous sample
  - As x changes, Q(x'|x) can also change (as a function of x')



## **Metropolis-Hastings Algorithm**

- Draws a sample x' from Q(x'|x), where x is the previous sample
- The new sample x' is accepted or rejected with some probability A(x'|x)
  - This acceptance probability is

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- A(x'|x) is like a ratio of importance sampling weights
  - P(x')/Q(x'|x) is the importance weight for x', P(x)/Q(x|x') is the importance weight for x
  - We divide the importance weight for x' by that of x
  - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x) separately
- A(x'|x) ensures that, after sufficiently many draws, our samples will come from the true distribution P(x)

## **Metropolis-Hastings Algorithm**

- 1. Initialize starting state  $x^{(0)}$ , set t = 0
- 2. Burn-in: while samples have "not converged"
  - $x=x^{(t)}, t=t+1$
  - sample  $x^* \sim Q(x^*|x)$  // draw from proposal
  - sample *u* ~ Uniform(0,1) // draw acceptance threshold

• If 
$$u < A(x^* | x) = \min\left(1, \frac{P(x^*)Q(x | x^*)}{P(x)Q(x^* | x)}\right)$$

- **x**<sup>(t)</sup> = **x**\* // transition
- else
  - $x^{(t)} = x$  // stay in current state
- 3. Take samples from P(x): Reset t=0, for t=1:N
  - $x(t+1) \leftarrow \text{Draw sample } (x(t))$
- 4. Monte Carlo Estimation using these N final samples

Function Draw sample (*x*(t))

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
  - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
  - We're trying to sample from a bimodal distribution P(x)



## Agenda

- Probability Review
- Approximate Inference
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)
    - Theoretical Aspects of MCMC



#### **Theoretical Aspects of MCMC**

- The MH algorithm has a "burn-in"/"warm-up" period. We throw away all the samples we get from this period. Why?
- Why are the MH samples guaranteed to be from P(x)?
  - The proposal Q(x'|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?
- What are good, general-purpose, proposal distributions?

 A Markov Chain is a sequence of random variables x<sup>(1)</sup>,x<sup>(2)</sup>,...,x<sup>(t)</sup> with the Markov Property

- $P(x^{(t)} = x | x^{(t-1)})$  is known as the <u>transition kernel</u> (just a matrix for discrete random variables)
- The whole process is completely determined by the transition kernel and the initial state. The next state depends only on the preceding state
- Note: the random variable x<sup>(i)</sup> can be <u>vectors</u>
  - We define x<sup>(t)</sup> to be the t-th sample of <u>all</u> variables in our model
- We study homogeneous Markov Chains, in which the transition kernel  $P(x^{(t)} = x' | x^{(t-1)} = x)$  is fixed with time
  - To emphasize this, we will call the kernel T(x' | x), where x is the previous state and x' is the next state



Randomly pick an outgoing edge (sample  $x^{(1)}$  given  $x^{(0)} = (1,1)$ ) Initialize the simulation in one state (or randomly)  $x^{(0)}$ 

#### **Markov Chain Concepts**

- To understand MCs, we need to define a few concepts:
  - Probability distributions over states:  $\pi^{(t)}(x)$  is a distribution over the state of the system x, at time t
    - When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
    - Here x represents <u>all</u> variables
  - Transitions: recall that states transition from  $x^{(t)}$  to  $x^{(t+1)}$  according to the transition kernel T(x'|x). We can also transit the entire distribution:

 $\pi^{(t+1)}(x') = \sum_{x} \pi^{(t)}(x) T(x' \mid x)$ 

• At time t, state x has probability mass  $\pi^{(t)}(x)$ . The transition probability redistributes this mass to other states x'.





Initialize the simulation in one state  $\mathbf{x}^{(0)}$ 



Initialize the simulation in one state  $\mathbf{x}^{(0)}$ 



Initialize the simulation in one state  $\mathbf{x}^{(0)}$ 

#### **Stationary Distribution**

•  $\pi(x)$  is stationary if it does not change under the transition kernel T(x' | x)

$$\pi(x') = \sum_{x} \pi(x) T(x' \mid x) \text{ for all x'}$$

- A MC is reversible if there exists a distribution π(x) such that the detailed balance condition is satisfied: π(x')T(x | x') = π(x)T(x' | x)
  - This is saying under the distribution  $\pi(x)$ , the probability of x' $\rightarrow$ x is the same as x $\rightarrow$ x'
- Theorem:  $\pi(x)$  is a stationary distribution of the MC if it is reversible

### **Properties of Markov Chains**

- Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability > 0 in a finite number of steps
  - i.e. there are no unreachable parts of the state space
  - This property only depends on the transition kernel, not the initial state
- Aperiodic: an MC is aperiodic if you can return to any state *i* at any time
  - If there exists *n* such that for all  $n' \ge n$ ,  $Pr(x^{(n')} = i | x^{(0)} = i) > 0$
- Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

## **Examples**



Reducible. Limiting distribution depends on initial condition



Irreducible, periodic (each state visited every 3 iterations) Limiting distribution does not exist



Irreducible, aperiodic. Unique limiting distribution P(x) = [0.6, 0.4]

# **Stationary Distribution**

- Ergodicity implies you can reach the stationary distribution  $\pi_{st}(x)$ , no matter the initial distribution  $\pi^{(0)}(x)$ 
  - All good MCMC algorithms must satisfy ergodicity, so that you can't initialize in a way that will never converge

## Why Does MH Work?

- Recall that we draw a sample x' according to Q(x'|x), and then accept/reject according to A(x'|x).
  - In other words, the transition kernel is

 $T(x' \mid x) = Q(x' \mid x)A(x' \mid x)$ 

• We can prove MH is reversible, i.e. stationary distribution exists:

Recall that  

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

• Notice this implies the following:

if 
$$A(x'|x) < 1$$
 then  $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$  and thus  $A(x|x') = 1$ 

# Why Does MH Work?

if A(x'|x) < 1 then  $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$  and thus A(x|x') = 1

Now suppose A(x'|x) < 1 and A(x|x') = 1. We have</li>

 $A(x'|x) = \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}$  P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x') P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x') P(x)T(x'|x) = P(x')T(x|x')

The last line is exactly the detailed balance condition

- In other words, the MH algorithm leads to a stationary distribution P(x)
- Recall we defined P(x) to be the true distribution of x
- If ergodic (irreducible & aperiodic), MH algorithm eventually converges to the true distribution

# Why Does MH Work?

- Theorem: If a Markov chain is ergodic and reversible with respect to P(x), then P(x) is its unique stationary distribution. The chain converges to the stationary distribution regardless of where it begins.
- The *mixing time*, or how long it takes to **reach** something close the stationary distribution, can't be guaranteed.

## Agenda

- **Probability Review**
- **Approximate Inference** 
  - Monte Carlo and Importance Sampling
  - Markov Chain Monte Carlo (MCMC)
    - Theoretical Aspects of MCMC
  - Gibbs Sampling and Practical MCMC



# **Gibbs Sampling**

- Gibbs Sampling is a special case of the MH algorithm
- Gibbs Sampling samples each random variable one at a time. Therefore, it has reasonable computation and memory requirements

# **Gibbs Sampling Algorithm**

- Suppose the model contains variables x<sub>1</sub>,...,x<sub>n</sub>
- Initialize starting values for x<sub>1</sub>,...,x<sub>n</sub>
- Do until convergence:
  - 1. Pick an ordering of the n variables (can be fixed or random)
  - 2. For each variable x<sub>i</sub> in order:
    - Sample x ~ P(x<sub>i</sub> | x<sub>1</sub>, ..., x<sub>i-1</sub>, x<sub>i+1</sub>, ..., x<sub>n</sub>), i.e. the conditional distribution of x<sub>i</sub> given the current values of all other variables
    - 2. Update  $x_i \leftarrow x$
- When we update x<sub>i</sub>, we <u>immediately</u> use its new value for sampling other variables x<sub>j</sub>

## **Gibbs Sampling is MH**

• The GS proposal distribution is

$$Q(x'_i, \mathbf{x}_{-i} \mid x_i, \mathbf{x}_{-i}) = P(x'_i \mid \mathbf{x}_{-i})$$

(x<sub>-i</sub> denotes all variables except x<sub>i</sub>)

• Applying Metropolis-Hastings with this proposal, we obtain:

$$A(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) = \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} \mid x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i})}\right)$$
  
$$= \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right) = \min\left(1, \frac{P(x'_{i} \mid \mathbf{x}_{-i})P(\mathbf{x}_{-i} \mid \mathbf{x}_{-i})}{P(x_{i} \mid \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right)$$
  
$$= \min(1, 1) = 1$$

GS is simply MH with a proposal that is always accepted

#### **Practical Aspects of MCMC**

- How do we know if our proposal Q(x'|x) is good or not?
  - Monitor the acceptance rate
  - Plot the autocorrelation function

#### **Acceptance Rate**



- Choosing the proposal Q(x'|x) is a tradeoff:
  - "Narrow", low-variance proposals have high acceptance, but take many iterations to explore P(x) fully because the proposed x are too close
  - "Wide", high-variance proposals have the potential to explore much of P(x), but many proposals are rejected which slows down the sampler
- A good Q(x'|x) proposes distant samples x' with a sufficiently high acceptance rate

#### **Acceptance Rate**



- Acceptance rate is the fraction of samples that MH accepts.
  - General guideline: proposals should have ~0.5 acceptance rate [1]

#### • Gaussian special case:

 If both P(x) and Q(x'|x) are Gaussian, the optimal acceptance rate is ~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

Muller, P. (1993). "A Generic Approach to Posterior Integration and Gibbs Sampling"
 Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). "Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms"

## **Autocorrelation Function**



- MCMC chains always show autocorrelation (AC)
  - AC means that adjacent samples in time are highly correlated
- We quantify AC with the autocorrelation function of an r.v. x:

$$R_{x}(k) = \frac{\sum_{t=1}^{n-k} (x_{t} - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{n-k} (x_{t} - \bar{x})^{2}}$$

- High autocorrelation leads to smaller effective sample size!
- We want proposals Q(x'|x) with low autocorrelation

#### **Practical Aspects of MCMC**

- How do we know if our proposal Q(x'|x) is any good?
  - Monitor the acceptance rate
  - Plot the autocorrelation function
- How do we know when to stop burn-in?
  - Plot the sample values vs time

# **Sample Values vs Time**



- Monitor convergence by plotting samples (of r.v.s) from multiple MH runs (chains)
  - If the chains are well-mixed (left), they are probably converged
  - If the chains are poorly-mixed (right), we should continue burn-in
- In practice, we usually start with multiple chains

### **Summary**

- Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from the true distribution P(x)
- Metropolis-Hastings allows you to specify any proposal Q(x'|x)
  - But choosing a good Q(x'|x) is not easy
- Gibbs sampling sets the proposal Q(x'|x) to the conditional distribution P(x'|x)
  - Acceptance rate is always 1!
  - But remember that high acceptance usually entails slow exploration
  - In fact, there are better MCMC algorithms for certain models
- Knowing when to halt burn-in is an art

Thank you! Q & A