

Ermon, Yumeng Zhang (Stanford), and David Sontag (MIT)

Agenda

- Probability Review
- Approximate Inference
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC
 - Gibbs Sampling and Practical MCMC

Agenda

Probability Review

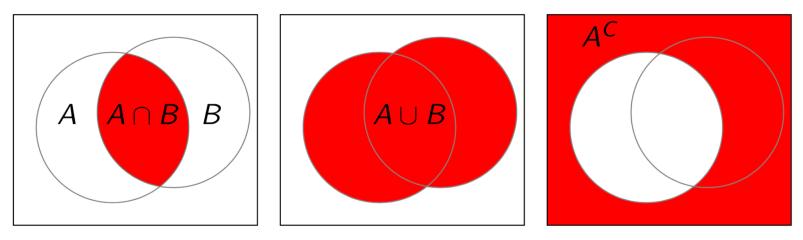
- Approximate Inference
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC
 - Gibbs Sampling and Practical MCMC

Sets

A set is just a collection of elements denoted e.g.,

 $S = \{s_1, s_2, s_3\}, R = \{r : \text{some condition holds on } r\}.$

- Intersection: the elements that are in both sets: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Union: the elements that are in either set, or both: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- **Complementation**: all the elements that aren't in the set: $A^{C} = \{x : x \notin A\}.$



Sets

- A sequence of sets A₁, A₂... is called **pairwise disjoint** or **mutually exclusive** if for all *i* ≠ *j*, A_i ∩ A_j = {}.
- ► If the sequence is pairwise disjoint and U[∞]_{i=1} A_i = S, then the sequence forms a **partition** of S.

What is **Probability**

• When we talk about probability, we are actually assuming there is a probability space.

The probability space is discribed by the 3-tuple $(\Omega, \mathcal{F}, \mathbb{P})$:

- Sample space $\Omega =$ "Set of all possible outcome ω 's";
- σ-field F = collection of "events" = subsets of Ω;
 Given event A ∈ F, A occurs if and only if ω ∈ A;
- Probability $\mathbb{P}: \mathcal{F} \rightarrow [0,1]$ maps events to real [0,1]-values.
- Example of rolling a die

$$\begin{split} &\Omega = \{1, 2, 3, 4, 5, 6\} \\ &\mathcal{F} = 2^{\Omega} = \{\{1\}, \{2\} \dots \{1, 2\} \dots \{1, 2, 3\} \dots \{1, 2, 3, 4, 5, 6\}, \{\}\} \\ &P(\{1\}) = P(\{2\}) = \dots = \frac{1}{6} \text{ (i.e., a fair die)} \\ &P(\{1, 3, 5\}) = \frac{1}{2} \text{ (i.e., half chance of odd result)} \\ &P(\{1, 2, 3, 4, 5, 6\}) = 1 \text{ (i.e., result is "almost surely" one of the faces).} \end{split}$$

Axioms of Probability

• Three axioms and corresponding

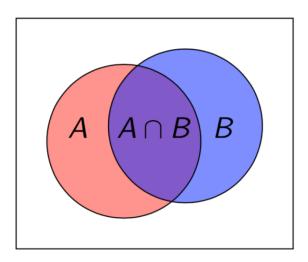
A set of conditions imposed on probability measures (due to Kolmogorov)

- ▶ $P(A) \ge 0, \forall A \in \mathcal{F}$
- $P(\Omega) = 1$
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ where $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$ are pairwise disjoint.

These quickly lead to:

- $P(A^{C}) = 1 P(A)$ (since $P(A) + P(A^{C}) = P(A \cup A^{C}) = P(\Omega) = 1$).
- ► $P(A) \leq 1$ (since $P(A^{C}) \geq 0$).
- $P(\{\}) = 0$ (since $P(\Omega) = 1$).

Conditional Probabilities



For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the **conditional probability of A given B**:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

Interpretation: the outcome is definitely in B, so treat B as the entire sample space and find the probability that the outcome is also in A.

Independence

Two events A, B are called **independent** if $P(A \cap B) = P(A)P(B)$. When P(A) > 0 this may be written P(B|A) = P(B) (why?)

Two events A, B are called **conditionally independent given** C when $P(A \cap B|C) = P(A|C)P(B|C)$.

When P(A) > 0 we may write P(B|A, C) = P(B|C)

The difference is important. Later, we will need this to understand the Markov Chain.

Bayes' Rule

Using the chain rule we may see:

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

Rearranging this yields **Bayes' rule**:

$$P(B|A) = rac{P(A|B)P(B)}{P(A)}$$

Often this is written as:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}$$

Where B_i are a partition of Ω (note the bottom is just the law of total probability).

Random Variables

• A random variable X is just a function: $X : \Omega \to \mathbb{R}^d$

Intuitively, a random variable is a variable that takes on its values by chance. (Usually denoted by capital letters X, Y, Z...)

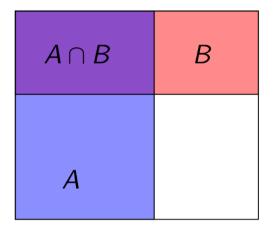
Can be described by the **probability mass function** $\mathbb{P}(X = x_i) = p_i$ for i = 1, 2, ...e.g. Bernoulli, Binomial, Geometric, Poisson, etc. Can be described by the **probability density function** $\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx.$ e.g. Exponential, Normal, Beta, etc.

Singular: Can not be described by either. Not useful.

Nonetheless, a random variable can always be determined by its cumulative distribution function $F(x) = \mathbb{P}(X \le x)$.

Joint Distributions

We may consider multiple functions of the same sample space, e.g., $X(\omega) = 1_A(\omega), Y(\omega) = 1_B(\omega)$:



May represent the **joint distribution** as a <u>table</u>:

	X=0	X=1
Y=0	0.25	0.15
Y=1	0.35	0.25

We write the joint PMF or PDF as $f_{X,Y}(x,y)$

Independent Distributions

We talked about independent events. Now we can extend the same idea to random variables

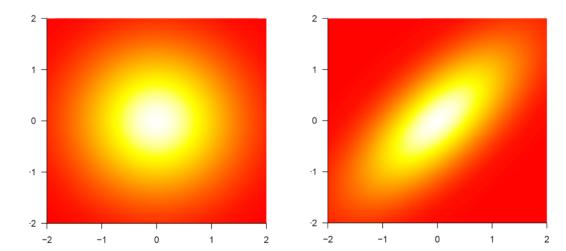
Two random variables are called **independent** when the joint PDF factorizes:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

When RVs are independent and identically distributed this is usually abbreviated to "i.i.d."

Relationship to independent events: X, Y ind. iff

 $\{\omega: X(\omega) \le x\}, \{\omega: Y(\omega) \le y\}$ are independent events for all x, y.



Marginalizing and Conditioning

 Given a joint distribution of more than one random variable, we can find the distribution of one random variable

$$P(X = x) = \sum_{y} P(X = x, Y = y) = \sum_{y} P(X = x | Y = y) P(Y = y)$$

• We can also find the distribution of one random variable conditioning on the other random variable

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{\text{joint pmf}}{\text{marginal pmf}}$$

Expectation and Variance

We may consider the **expectation** (or "mean") of a distribution:

$$E(X) = \begin{cases} \sum_{x} x f_X(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ is continuous} \end{cases}$$

We may consider the **variance** of a distribution:

$$Var(X) = E(X - EX)^2$$

This may give an idea of how "spread out" a distribution is.

Markov Inequality

• Markov inequality: If $X \ge 0$, then for any $c \ge 0$,

$$\mathbb{P}(X \ge c) \leqslant \frac{\mathbb{E}X}{c}.$$

• This inequality is telling us a random variable can't be too different from its mean. Note: we know nothing about the distribution of X!

Law of Large Numbers (LLN)

• LLN describes the asymptotic behavior of the sample mean.

Recall our variable $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. We may wonder about its behavior as $n \to \infty$.

We had:
$$E\bar{X}_n = \mu$$
, $Var(\bar{X}_n) = \frac{\sigma^2}{n}$

Distribution appears to be "contracting:" as n increases, variance is going to 0.

The weak law of large numbers:

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|<\epsilon)=1$$

In English: choose ϵ and a probability that $|\bar{X}_n - \mu| < \epsilon$, I can find you an *n* so your probability is achieved.

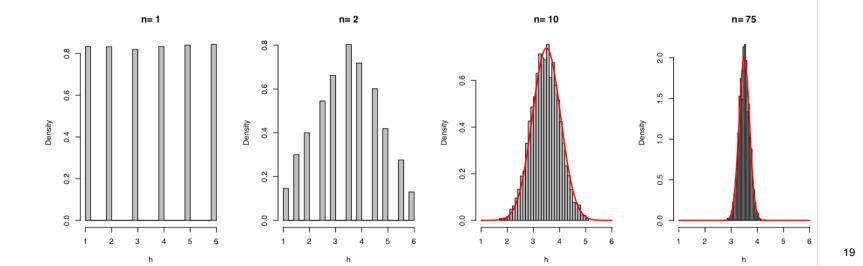
Central Limit Theorem (CLT)

 Similarly to LLN, CLT also describes the asymptotic behavior of the sample mean.

The distribution of \bar{X}_n also converges weakly to a Gaussian,

$$\lim_{n \to \infty} \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Simulated *n* dice rolls and took average, 5000 times:



LLN v.s. CLT

• How are these two different?

Recall our variable $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ $E\bar{X}_n = \mu$,

$$\bar{z} \bar{X}_n = \mu, \mathsf{Var}(\bar{X}_n) = rac{\sigma^2}{n}$$

• As n goes to infinity

• LLN:
$$P(|ar{X}_n-\mu|<\epsilon)=1$$

• CLT:
$$\frac{X_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

- The converges rates are different!
- Another way to understand it is that we standardized the random variable first before taking n to infinity.

Markov Chains

• We will see it when we get to the MCMC part later.

Agenda

- Probability Review
- Approximate Inference

- Monte Carlo and Importance Sampling
- Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC
- Gibbs Sampling and Practical MCMC

Probabilistic Inference

- Many tasks actually boil down to inference tasks, and we can further reduce them to answering probability queries.
 - The notation we will use through out this talk
 - some random variables X, some evidence variables E (variables we have observed), all the unobserved variables Z = X – E.
 - Some questions we can ask
 - Marginal probability: what is P(E=e)?
 - Conditional/Posterior probability: what is P(X_i=x | E=e)?
- Examples:
 - All the classification problems can fit in to this framework, e.g. node classification on graphs, P(label of X | labels of neighbours of X)?
 - Language model: P(X3="mathematics" | X1="I", X2="like")?

Why Approximate Inference?

- For real world problems with many random variable, doing exact inference is computationally intractable.
- Approximation is useful:
 - Suppose the ground truth is P(Z=z | E=e)=0.29292, and the approximate inference yields P(Z=z | E=e) = 0.3. This might be good enough for many applications.

Approximate Inference

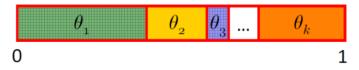
- Two main families of approximate inference algorithms:
 - Variational algorithms
 - Monte-Carlo sampling methods
- The basic idea of sampling method is to approximate a probability distribution using a small number of states that are "representative" of the entire probability distribution

Agenda

- Probability Review
- Approximate Inference
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC
 - Gibbs Sampling and Practical MCMC

How to generate a sample?

- Given a set of variables X = {X₁,..., X_n}, a sample x = (x₁,..., x_n) is an assignment to all variables (also called an instantiation or a state)
- How to randomly generate a sample/state according to probabilities assigned by P(x)?
- Algorithm to draw a sample from a *univariate* distribution P(X). A sample is just an assignment to X. Domain of X = {a⁰,..., a^{k-1}}
 - **1** Divide a real line [0, 1] into k intervals such that the width θ_j of the j-th interval is equal to $P(X = a^j)$
 - 2 Draw a random number $r \in [0, 1]$
 - 3 Determine the region j in which r lies. Output a^{j}



Monte Carlo Estimation

Express the quantity of interest as the expected value of a random variable.

$$E_{x\sim P}[g(x)] = \sum_{x} g(x)P(x)$$

- Generate T samples x¹,..., x^T from the distribution P with respect to which the expectation was taken.
- Stimate the expected value from the samples using:

$$\hat{g}(\mathbf{x}^1, \cdots, \mathbf{x}^T) \triangleq rac{1}{T} \sum_{t=1}^T g(\mathbf{x}^t)$$

where $\mathbf{x}^1, \ldots, \mathbf{x}^T$ are independent samples from P. Note: \hat{g} is a random variable. Why?

Properties of the Monte Carlo

• Unbiased:

$$E_P[\hat{g}] = E_P[g(x)]$$

• Convergence: By law of large numbers

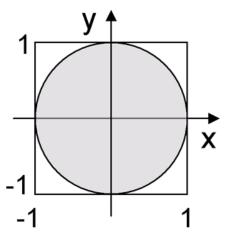
$$\hat{g} = rac{1}{T} \sum_{t=1}^{T} g(x^t)
ightarrow \mathcal{E}_{\mathcal{P}}[g(x)] ext{ for } T
ightarrow \infty$$

• Variance:

$$V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)
ight] = rac{V_P[g(x)]}{T}$$

Thus, variance of the estimator can be reduced by increasing the number of samples. We have no control over the numerator when P is given. How quickly does the estimate converge to the true expectation?

Rejection Sampling



- Suppose you want to sample points uniformly within the circle
- You have access to a uniform random generator in [-1,1]
- Sample $x \sim \mathcal{U}[-1, 1]$
- Sample $y \sim \mathcal{U}[-1, 1]$
- If $x^2 + y^2 \le 1$, accept the sample. Otherwise reject it and try again.

Rejection Sampling

• Express P(E = e) as an expectation:

$$P(E = e) = \sum_{x} \delta_e(x) P(x) = E_P[\delta_e(x)]$$

where $\delta_e(x)$ is an indicator function which is 1 if x is consistent with the evidence E = e and 0 otherwise.

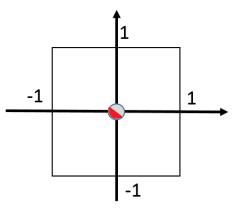
- Generate samples
- Monte Carlo estimate $\hat{g}(x_1, \cdots, x_T) = \frac{1}{T} \sum_{t=1}^T g(x^t)$:

 $\hat{P}(E = e) = \frac{\text{Number of samples that have } E = e}{\text{Total number of samples}}$

• Issues: If P(E = e) is very small (e.g., 10^{-55}), nearly all samples will be rejected.

• Note: even if
$$P(E = e)$$
 is extremely small,
 $p(X = x | E = e) = p(X = x, E = e)/p(E = e)$ can be large.

Failure Case



- Suppose you want to sample points uniformly within the circle
- You have access to a uniform random generator in [-1,1]
- Sample $x \sim \mathcal{U}[-1, 1]$, sample $y \sim \mathcal{U}[-1, 1]$
- If (x, y) is in the circle, accept the sample. Otherwise reject it and try again.
- Can be extremely inefficient if the circle is small
- A conditional probability is like the ratio between the red vs. gray circle areas. Can we sample directly inside the gray circle?

Importance Sampling

- Idea: evidence variables are fixed, so let's just sample over non-evidence ones
- Idea: use a proposal distribution over non-evidence variables
 Q(Z = X \ E) that we can efficiently sample from and such that
 P(Z = z, E = e) > 0 ⇒ Q(Z = z) > 0. Express P(E = e) as follows:

$$P(E = e) = \sum_{z} P(Z = z, E = e)$$

=
$$\sum_{z} P(Z = z, E = e) \frac{Q(Z = z)}{Q(Z = z)}$$

=
$$E_Q \left[\frac{P(Z = z, E = e)}{Q(Z = z)} \right] = E_Q[w(z)]$$

• Generate samples from Q and estimate P(E = e) using the following Monte Carlo estimate:

$$\hat{P}(E=e) = rac{1}{T} \sum_{t=1}^{T} rac{P(Z=z^t, E=e)}{Q(Z=z^t)} = rac{1}{T} \sum_{t=1}^{T} w(z^t)$$

where (z^1, \ldots, z^T) are sampled from Q.

Ideal Proposal Distribution

- For optimum performance, the proposal distribution Q should be as close as possible to P(Z|E = e).
 - When Q = P(Z|E = e), the weight of every sample is P(E = e)!

$$w(z^{t}) = \frac{P(Z = z^{t}, E = e)}{Q(Z = z^{t})} = \frac{P(Z = z^{t}, E = e)}{P(Z = z^{t} | E = e)}$$
$$= \frac{P(Z = z^{t}, E = e)P(E = e)}{P(Z = z^{t}, E = e)}$$
$$= P(E = e)$$

- Weight does not depend on z^t
- One sample would be sufficient!

Issue of Importance Sampling

- (Un-normalized) IS is not suitable for estimating $P(X_i = x_i | E = e)$.
- One option: Estimate the numerator and denominator by IS.

$$\hat{P}(X_i = x_i | E = e) = \frac{\hat{P}(X_i = x_i, E = e)}{\hat{P}(E = e)}$$

- This ratio estimate can be inaccurate because errors in the numerator and denominator may be cumulative.
 - For example, if the numerator is an under-estimate and the denominator is an over-estimate.

Normalized Importance Sampling

- Partition the variables into evidence E and non-evidence Z
- Given an indicator function $\delta_{x_i}(z)$ (which is 1 if z is consistent with $X_i = x_i$ and 0 otherwise), we can write $P(X_i = x_i | E = e)$ as:

$$P(X_i = x_i | E = e) = \frac{P(X_i = x_i, E = e)}{P(E = e)} = \frac{\sum_z \delta_{x_i}(z) P(Z = z, E = e)}{\sum_z P(Z = z, E = e)}$$

 Now we can use the same Q and same samples from it to estimate both the numerator and the denominator.

$$\hat{P}(X_i = x_i | E = e) = \frac{\frac{1}{T} \sum_{t=1}^{T} \delta_{x_i}(z^t) w(z^t)}{\frac{1}{T} \sum_{t=1}^{T} w(z^t)}$$

Agenda

- **Probability Review**
- **Approximate Inference**
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)

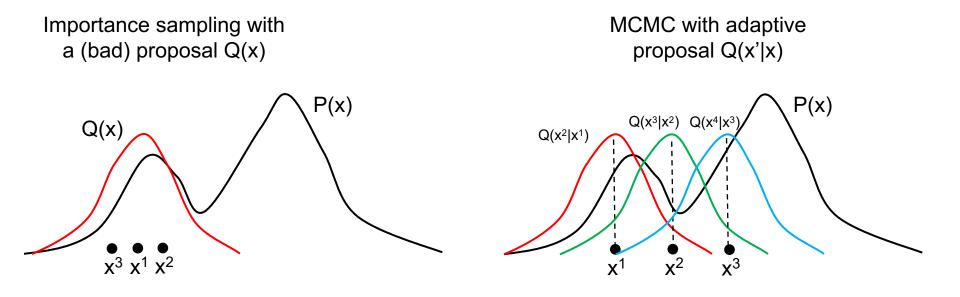
- **Theoretical Aspects of MCMC**
- **Gibbs Sampling and Practical MCMC**

Limitations of IS

- Does not work well if the proposal Q(x) is very different from P(x)
- Yet constructing a Q(x) similar to P(x) can be difficult
 - Making a good proposal usually requires knowledge of the analytic form of P(x) – but if we had that, we wouldn't even need to sample!
- Intuition: instead of a fixed proposal Q(x), what if we could use an adaptive proposal?

Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
 - Instead of Q(x'), they use Q(x'|x) where x' is the new state being sampled, and x is the previous sample
 - As x changes, Q(x'|x) can also change (as a function of x')



Metropolis-Hastings Algorithm

- Draws a sample x' from Q(x'|x), where x is the previous sample
- The new sample x' is accepted or rejected with some probability A(x'|x)
 - This acceptance probability is

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- A(x'|x) is like a ratio of importance sampling weights
 - P(x')/Q(x'|x) is the importance weight for x', P(x)/Q(x|x') is the importance weight for x
 - We divide the importance weight for x' by that of x
 - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x) separately
- A(x'|x) ensures that, after sufficiently many draws, our samples will come from the true distribution P(x)

Metropolis-Hastings Algorithm

- 1. Initialize starting state $x^{(0)}$, set t = 0
- 2. Burn-in: while samples have "not converged"
 - $x=x^{(t)}, t=t+1$
 - sample $x^* \sim Q(x^*|x)$ // draw from proposal
 - sample *u* ~ Uniform(0,1) // draw acceptance threshold

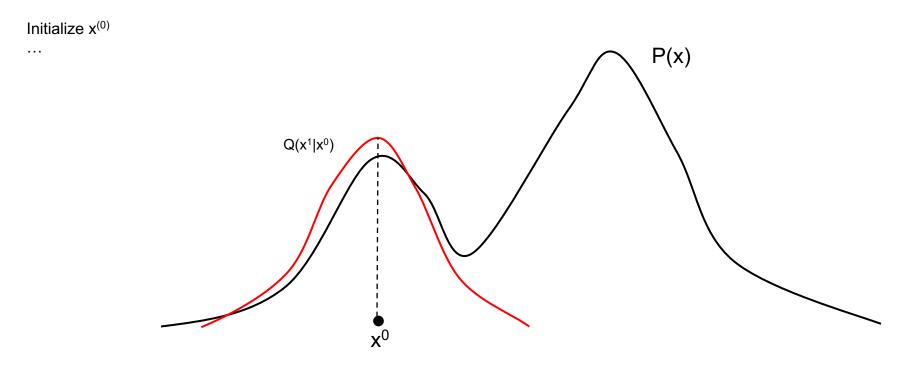
• If
$$u < A(x^* | x) = \min\left(1, \frac{P(x^*)Q(x | x^*)}{P(x)Q(x^* | x)}\right)$$

- **x**^(t) = **x*** // transition
- else
 - $x^{(t)} = x$ // stay in current state
- 3. Take samples from P(x): Reset t=0, for t=1:N
 - $x(t+1) \leftarrow \text{Draw sample } (x(t))$
- 4. Monte Carlo Estimation using these N final samples

Function Draw sample (*x*(t))

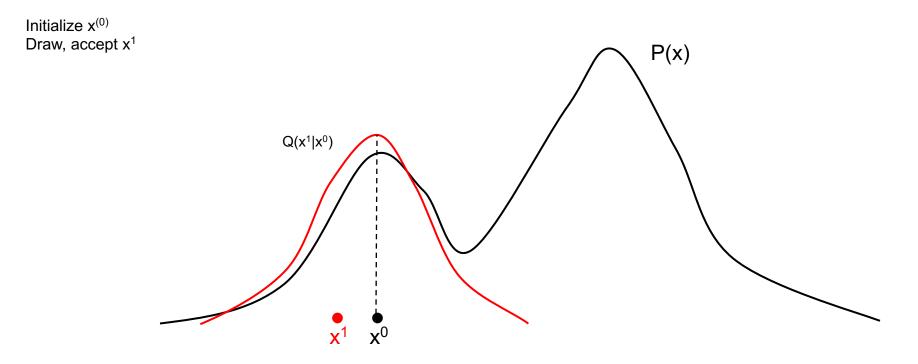
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



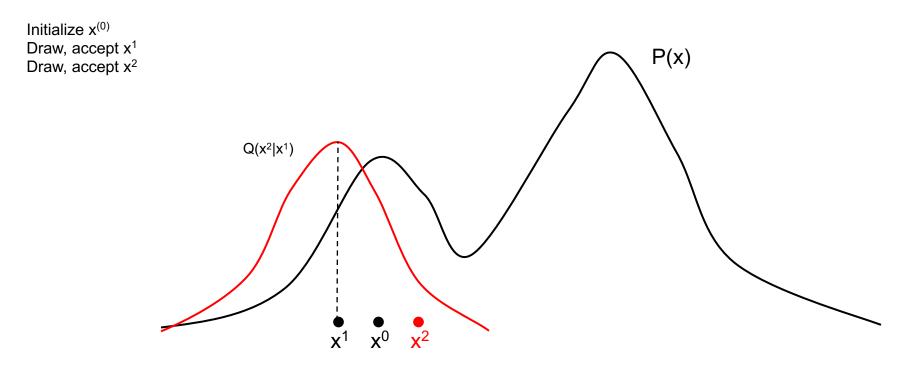
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



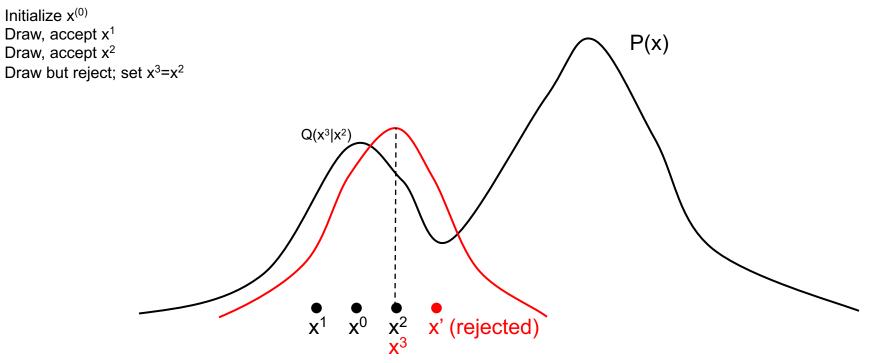
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



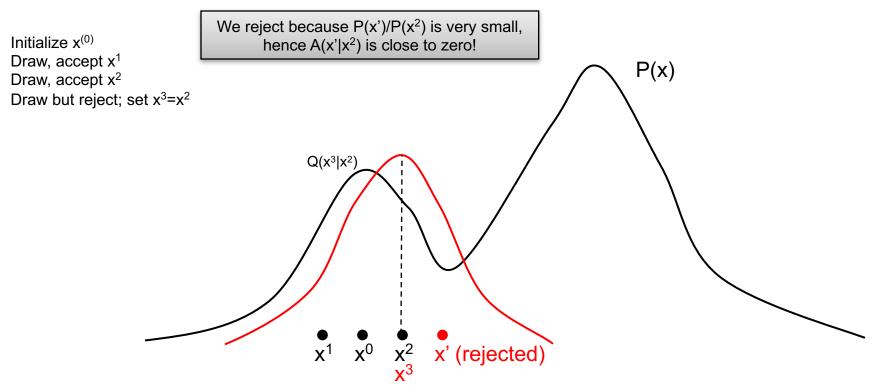
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



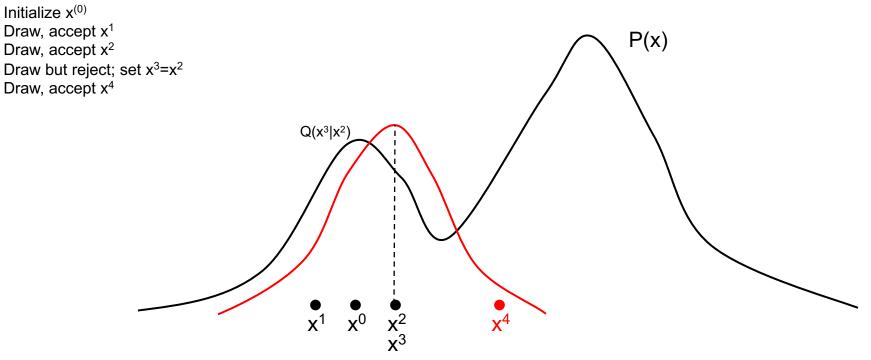
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



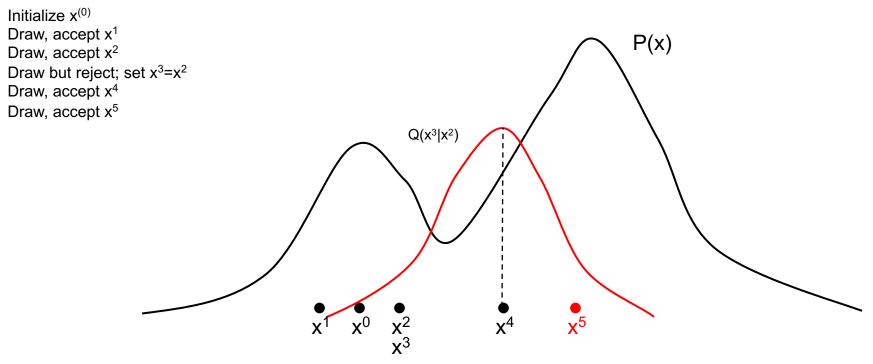
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



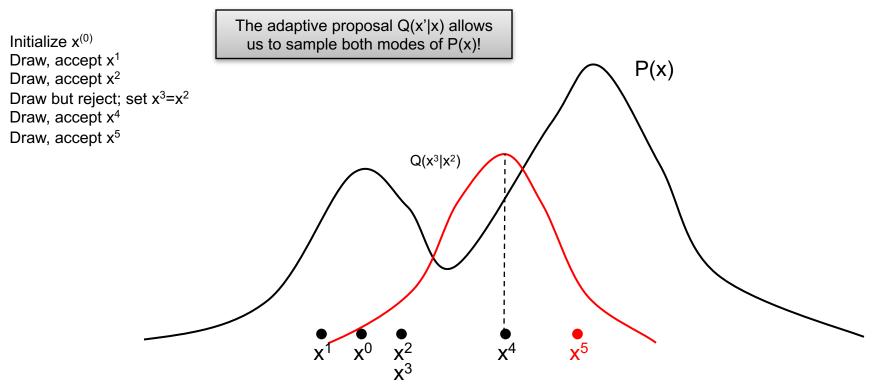
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
 - We're trying to sample from a bimodal distribution P(x)



Agenda

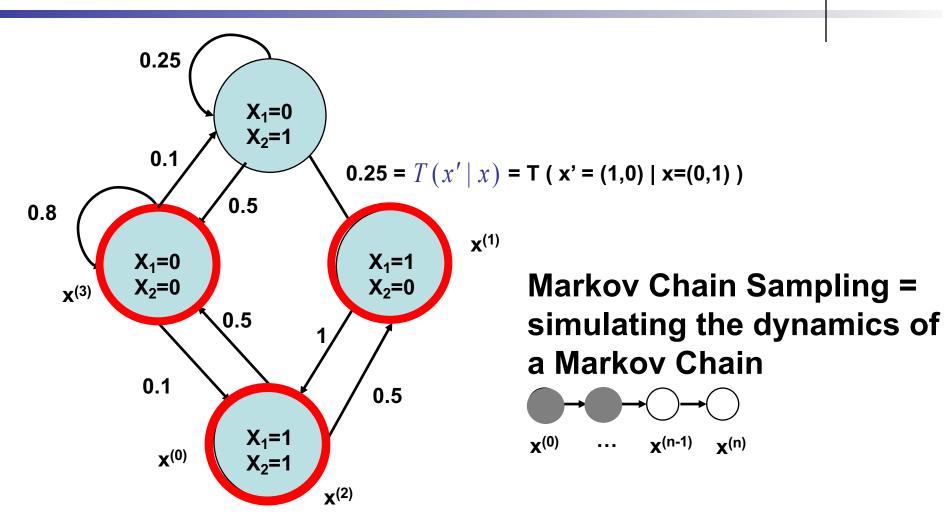
- Probability Review
- Approximate Inference
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC

Theoretical Aspects of MCMC

- The MH algorithm has a "burn-in"/"warm-up" period. We throw away all the samples we get from this period. Why?
- Why are the MH samples guaranteed to be from P(x)?
 - The proposal Q(x'|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?
- What are good, general-purpose, proposal distributions?

 A Markov Chain is a sequence of random variables x⁽¹⁾,x⁽²⁾,...,x^(t) with the Markov Property

- $P(x^{(t)} = x | x^{(t-1)})$ is known as the <u>transition kernel</u> (just a matrix for discrete random variables)
- The whole process is completely determined by the transition kernel and the initial state. The next state depends only on the preceding state
- Note: the random variable x⁽ⁱ⁾ can be <u>vectors</u>
 - We define x^(t) to be the t-th sample of <u>all</u> variables in our model
- We study homogeneous Markov Chains, in which the transition kernel $P(x^{(t)} = x' | x^{(t-1)} = x)$ is fixed with time
 - To emphasize this, we will call the kernel T(x' | x), where x is the previous state and x' is the next state



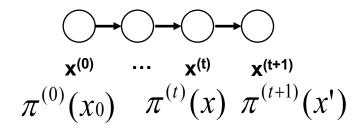
Randomly pick an outgoing edge (sample $x^{(1)}$ given $x^{(0)} = (1,1)$) Initialize the simulation in one state (or randomly) $x^{(0)}$

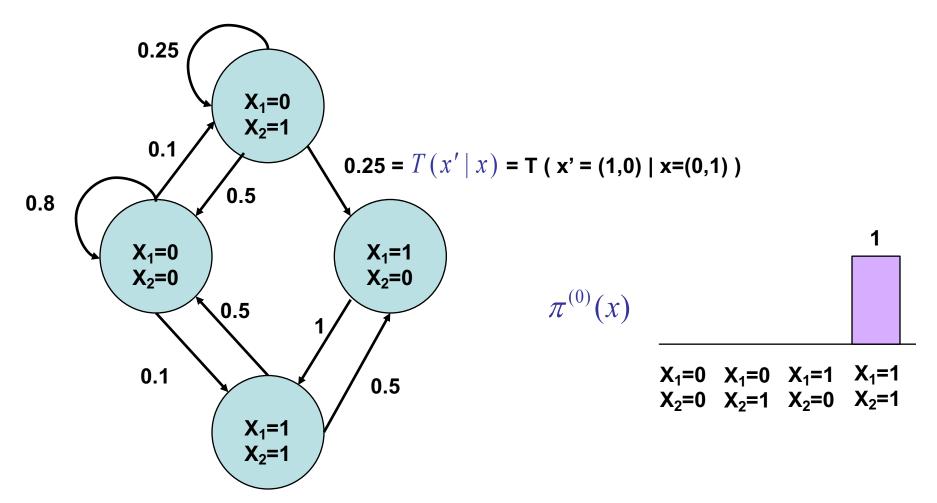
Markov Chain Concepts

- To understand MCs, we need to define a few concepts:
 - Probability distributions over states: $\pi^{(t)}(x)$ is a distribution over the state of the system x, at time t
 - When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
 - Here x represents <u>all</u> variables
 - Transitions: recall that states transition from $x^{(t)}$ to $x^{(t+1)}$ according to the transition kernel T(x'|x). We can also transit the entire distribution:

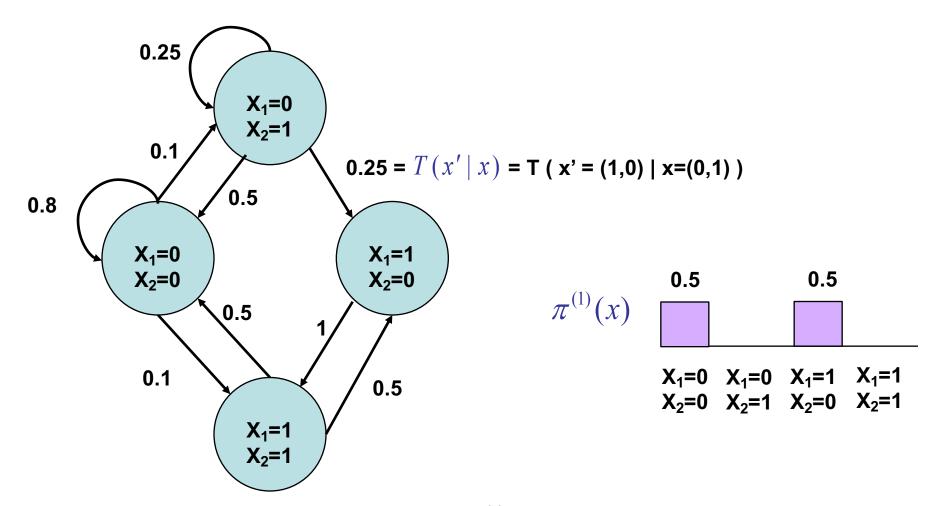
 $\pi^{(t+1)}(x') = \sum_{x} \pi^{(t)}(x) T(x' \mid x)$

• At time t, state x has probability mass $\pi^{(t)}(x)$. The transition probability redistributes this mass to other states x'.

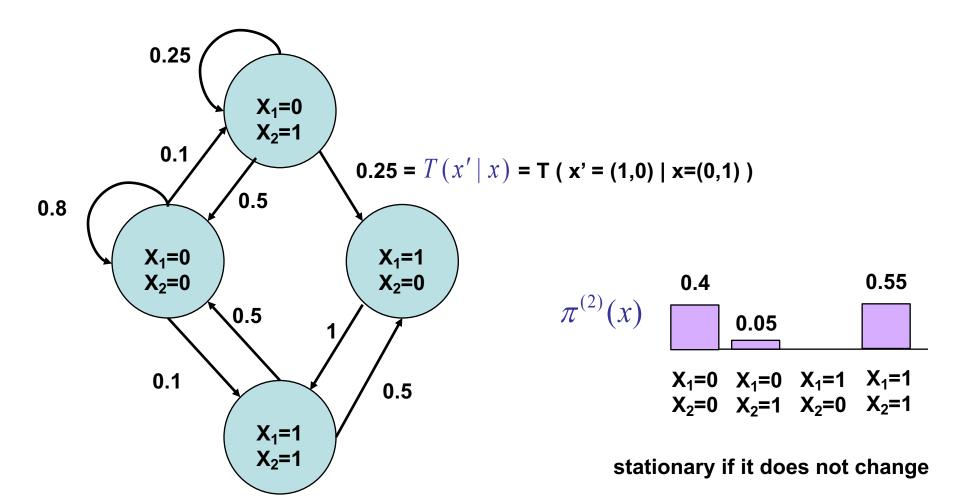




Initialize the simulation in one state $\mathbf{x}^{(0)}$



Initialize the simulation in one state $\mathbf{x}^{(0)}$



Initialize the simulation in one state $\mathbf{x}^{(0)}$

Stationary Distribution

• $\pi(x)$ is stationary if it does not change under the transition kernel T(x' | x)

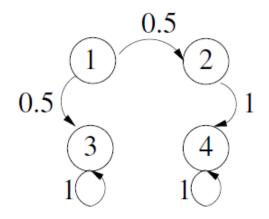
$$\pi(x') = \sum_{x} \pi(x) T(x' \mid x) \text{ for all x'}$$

- A MC is reversible if there exists a distribution π(x) such that the detailed balance condition is satisfied: π(x')T(x | x') = π(x)T(x' | x)
 - This is saying under the distribution $\pi(x)$, the probability of x' \rightarrow x is the same as x \rightarrow x'
- Theorem: $\pi(x)$ is a stationary distribution of the MC if it is reversible

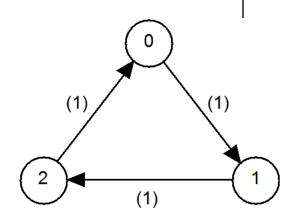
Properties of Markov Chains

- Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability > 0 in a finite number of steps
 - i.e. there are no unreachable parts of the state space
 - This property only depends on the transition kernel, not the initial state
- Aperiodic: an MC is aperiodic if you can return to any state *i* at any time
 - If there exists *n* such that for all $n' \ge n$, $Pr(x^{(n')} = i | x^{(0)} = i) > 0$
- Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

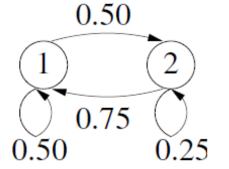
Examples



Reducible. Limiting distribution depends on initial condition



Irreducible, periodic (each state visited every 3 iterations) Limiting distribution does not exist



Irreducible, aperiodic. Unique limiting distribution P(x) = [0.6, 0.4]

Stationary Distribution

- Ergodicity implies you can reach the stationary distribution $\pi_{st}(x)$, no matter the initial distribution $\pi^{(0)}(x)$
 - All good MCMC algorithms must satisfy ergodicity, so that you can't initialize in a way that will never converge

Why Does MH Work?

- Recall that we draw a sample x' according to Q(x'|x), and then accept/reject according to A(x'|x).
 - In other words, the transition kernel is

 $T(x' \mid x) = Q(x' \mid x)A(x' \mid x)$

• We can prove MH is reversible, i.e. stationary distribution exists:

Recall that

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

• Notice this implies the following:

if
$$A(x'|x) < 1$$
 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

Why Does MH Work?

if A(x'|x) < 1 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$ and thus A(x|x') = 1

Now suppose A(x'|x) < 1 and A(x|x') = 1. We have

 $A(x'|x) = \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}$ P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x') P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x') P(x)T(x'|x) = P(x')T(x|x')

The last line is exactly the detailed balance condition

- In other words, the MH algorithm leads to a stationary distribution P(x)
- Recall we defined P(x) to be the true distribution of x
- If ergodic (irreducible & aperiodic), MH algorithm eventually converges to the true distribution

Why Does MH Work?

- Theorem: If a Markov chain is ergodic and reversible with respect to P(x), then P(x) is its unique stationary distribution. The chain converges to the stationary distribution regardless of where it begins.
- The *mixing time*, or how long it takes to **reach** something close the stationary distribution, can't be guaranteed.

Agenda

- **Probability Review**
- **Approximate Inference**
 - Monte Carlo and Importance Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Theoretical Aspects of MCMC
 - Gibbs Sampling and Practical MCMC

Gibbs Sampling

- Gibbs Sampling is a special case of the MH algorithm
- Gibbs Sampling samples each random variable one at a time. Therefore, it has reasonable computation and memory requirements

Gibbs Sampling Algorithm

- Suppose the model contains variables x₁,...,x_n
- Initialize starting values for x₁,...,x_n
- Do until convergence:
 - 1. Pick an ordering of the n variables (can be fixed or random)
 - 2. For each variable x_i in order:
 - Sample x ~ P(x_i | x₁, ..., x_{i-1}, x_{i+1}, ..., x_n), i.e. the conditional distribution of x_i given the current values of all other variables
 - 2. Update $x_i \leftarrow x$
- When we update x_i, we <u>immediately</u> use its new value for sampling other variables x_j

Gibbs Sampling is MH

• The GS proposal distribution is

$$Q(x'_i, \mathbf{x}_{-i} \mid x_i, \mathbf{x}_{-i}) = P(x'_i \mid \mathbf{x}_{-i})$$

(x_{-i} denotes all variables except x_i)

• Applying Metropolis-Hastings with this proposal, we obtain:

$$A(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) = \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} \mid x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i})}\right)$$

$$= \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right) = \min\left(1, \frac{P(x'_{i} \mid \mathbf{x}_{-i})P(\mathbf{x}_{-i} \mid \mathbf{x}_{-i})}{P(x_{i} \mid \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right)$$

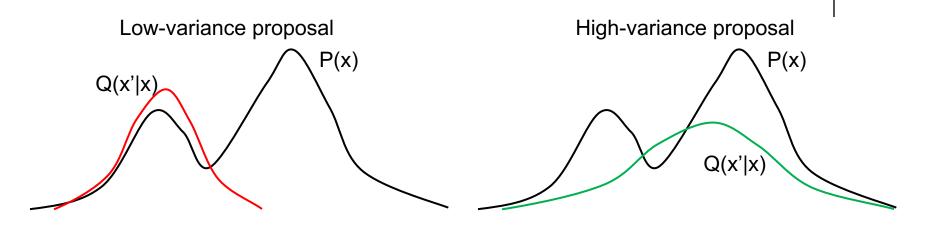
$$= \min(1, 1) = 1$$

GS is simply MH with a proposal that is always accepted

Practical Aspects of MCMC

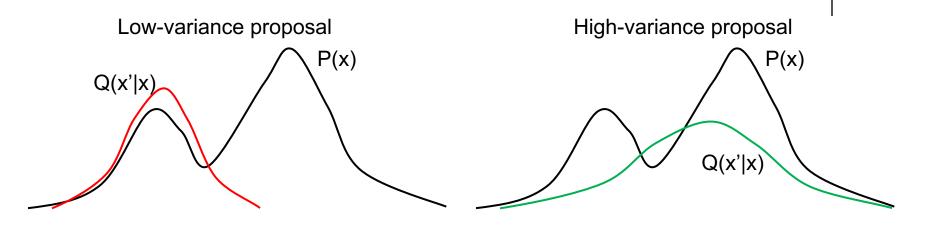
- How do we know if our proposal Q(x'|x) is good or not?
 - Monitor the acceptance rate
 - Plot the autocorrelation function

Acceptance Rate



- Choosing the proposal Q(x'|x) is a tradeoff:
 - "Narrow", low-variance proposals have high acceptance, but take many iterations to explore P(x) fully because the proposed x are too close
 - "Wide", high-variance proposals have the potential to explore much of P(x), but many proposals are rejected which slows down the sampler
- A good Q(x'|x) proposes distant samples x' with a sufficiently high acceptance rate

Acceptance Rate



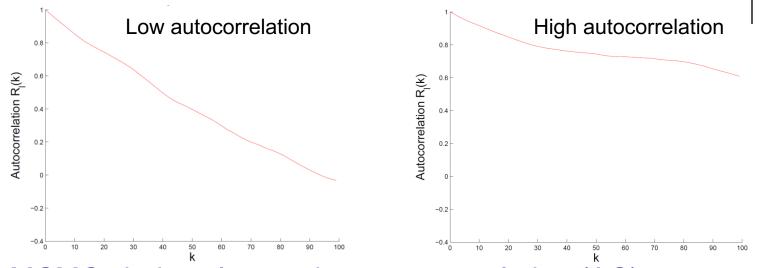
- Acceptance rate is the fraction of samples that MH accepts.
 - General guideline: proposals should have ~0.5 acceptance rate [1]

• Gaussian special case:

 If both P(x) and Q(x'|x) are Gaussian, the optimal acceptance rate is ~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

Muller, P. (1993). "A Generic Approach to Posterior Integration and Gibbs Sampling"
 Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). "Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms"

Autocorrelation Function



- MCMC chains always show autocorrelation (AC)
 - AC means that adjacent samples in time are highly correlated
- We quantify AC with the autocorrelation function of an r.v. x:

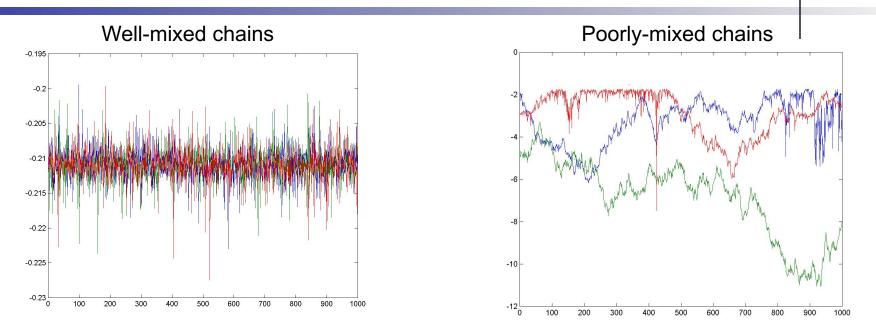
$$R_{x}(k) = \frac{\sum_{t=1}^{n-k} (x_{t} - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{n-k} (x_{t} - \bar{x})^{2}}$$

- High autocorrelation leads to smaller effective sample size!
- We want proposals Q(x'|x) with low autocorrelation

Practical Aspects of MCMC

- How do we know if our proposal Q(x'|x) is any good?
 - Monitor the acceptance rate
 - Plot the autocorrelation function
- How do we know when to stop burn-in?
 - Plot the sample values vs time

Sample Values vs Time



- Monitor convergence by plotting samples (of r.v.s) from multiple MH runs (chains)
 - If the chains are well-mixed (left), they are probably converged
 - If the chains are poorly-mixed (right), we should continue burn-in
- In practice, we usually start with multiple chains

Summary

- Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from the true distribution P(x)
- Metropolis-Hastings allows you to specify any proposal Q(x'|x)
 - But choosing a good Q(x'|x) is not easy
- Gibbs sampling sets the proposal Q(x'|x) to the conditional distribution P(x'|x)
 - Acceptance rate is always 1!
 - But remember that high acceptance usually entails slow exploration
 - In fact, there are better MCMC algorithms for certain models
- Knowing when to halt burn-in is an art

Thank you! Q & A