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Sets
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What is Probability
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l When we talk about probability, we are actually assuming
there is a probability space.

l Example of rolling a die



Axioms of Probability
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l Three axioms and corresponding



Conditional Probabilities
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Independence
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The difference is important. Later, we will need this to understand the Markov Chain.



Bayes’ Rule
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Random Variables
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l A random variable X is just a function:



Joint Distributions
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Independent Distributions

13

l We talked about independent events. Now we can extend the
same idea to random variables



Marginalizing and Conditioning
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l Given a joint distribution of more than one random variable, 
we can find the distribution of one random variable

l We can also find the distribution of one random variable 
conditioning on the other random variable



Expectation and Variance
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Markov Inequality
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l This inequality is telling us a random variable can’t be too 
different from its mean. Note: we know nothing about the 
distribution of X!



Law of Large Numbers (LLN)
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l LLN describes the asymptotic behavior of the sample mean.



Central Limit Theorem (CLT)
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l Similarly to LLN, CLT also describes the asymptotic behavior
of the sample mean.



LLN v.s. CLT

21

l As n goes to infinity 
l LLN:

l CLT:

l The converges rates are different!
l Another way to understand it is that we standardized the

random variable first before taking n to infinity. 

l How are these two different? 



Markov Chains
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l We will see it when we get to the MCMC part later.
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Probabilistic Inference

24

l Many tasks actually boil down to inference tasks, and we can 
further reduce them to answering probability queries.
l The notation we will use through out this talk

l some random variables X, some evidence variables E (variables we have 
observed), all the unobserved variables Z = X – E.

l Some questions we can ask
l Marginal probability: what is P(E=e)? 
l Conditional/Posterior probability: what is P(X_i=x | E=e)? 

l Examples:
l All the classification problems can fit in to this framework, e.g. node

classification on graphs, P(label of X | labels of neighbours of X)?
l Language model: P(X3=“mathematics” | X1=“I”, X2=“like”)?



Why Approximate Inference?

25

l For real world problems with many random variable, doing 
exact inference is computationally intractable. 

l Approximation is useful:
l Suppose the ground truth is P(Z=z | E=e)=0.29292, and the approximate 

inference yields P(Z=z | E=e) = 0.3. This might be good enough for 
many applications. 



Approximate Inference 
l Two main families of approximate inference algorithms: 

l Variational algorithms
l Monte-Carlo sampling methods

l The basic idea of sampling method is to approximate a 
probability distribution using a small number of states that are 
“representative” of the entire probability distribution 
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How to generate a sample?
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Monte Carlo Estimation 
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Properties of the Monte Carlo

30

Properties of the Monte Carlo Estimate

Unbiased:
EP [ĝ ] = EP [g(x)]

Convergence: By law of large numbers

ĝ =
1

T

TX

t=1

g(x t) ! EP [g(x)] for T ! 1

Variance:

VP [ĝ ] = VP

"
1

T

TX

t=1

g(x t)

#
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing the
number of samples. We have no control over the numerator when P
is given. How quickly does the estimate converge to the true
expectation?
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Rejection Sampling

32

Rejection Sampling: geometric idea

Suppose you want to sample points uniformly within the circle

You have access to a uniform random generator in [�1, 1]

Sample x ⇠ U [�1, 1]

Sample y ⇠ U [�1, 1]

If x2 + y2  1, accept the sample. Otherwise reject it and try again.
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Rejection Sampling
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Rejection Sampling

Express P(E = e) as an expectation:

P(E = e) =
X

x

�e(x)P(x) = EP [�e(x)]

where �e(x) is an indicator function which is 1 if x is consistent with
the evidence E = e and 0 otherwise.

Generate samples from the Bayesian network.

Monte Carlo estimate ĝ(x1, · · · , xT ) = 1
T

PT
t=1 g(x

t):

P̂(E = e) =
Number of samples that have E = e

Total number of samples

Issues: If P(E = e) is very small (e.g., 10�55), nearly all samples will
be rejected.

Note: even if P(E = e) is extremely small,
p(X = x | E = e) = p(X = x ,E = e)/p(E = e) can be large.
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Failure Case
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Rejection Sampling: failure case

Suppose you want to sample points uniformly within the circle

You have access to a uniform random generator in [�1, 1]

Sample x ⇠ U [�1, 1], sample y ⇠ U [�1, 1]

If (x , y) is in the circle, accept the sample. Otherwise reject it and try
again.

Can be extremely ine�cient if the circle is small

A conditional probability is like the ratio between the red vs. gray
circle areas. Can we sample directly inside the gray circle?
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Importance Sampling
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Importance Sampling

Idea: evidence variables are fixed, so let’s just sample over non-evidence ones

Idea: use a proposal distribution over non-evidence variables
Q(Z = X \ E ) that we can e�ciently sample from and such that
P(Z = z ,E = e) > 0 ) Q(Z = z) > 0. Express P(E = e) as follows:

P(E = e) =
X

z

P(Z = z ,E = e)

=
X

z

P(Z = z ,E = e)
Q(Z = z)

Q(Z = z)

= EQ


P(Z = z ,E = e)

Q(Z = z)

�
= EQ [w(z)]

Generate samples from Q and estimate using P(E = e) using the following
Monte Carlo estimate:

P̂(E = e) =
1

T

TX

t=1

P(Z = z t ,E = e)

Q(Z = z t)
=

1

T

TX

t=1

w(z t)

where (z1, . . . , zT ) are sampled from Q.
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Ideal Proposal Distribution
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Issue of Importance Sampling
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Normalized Importance Sampling

38

Normalized Importance sampling: Theory

Partition the variables into evidence E and non-evidence Z

Given an indicator function �xi (z) (which is 1 if z is consistent with
Xi = xi and 0 otherwise), we can write P(Xi = xi |E = e) as:

P(Xi = xi |E = e) =
P(Xi = xi ,E = e)

P(E = e)
=

P
z �xi (z)P(Z = z ,E = e)P

z P(Z = z ,E = e)

Now we can use the same Q and same samples from it to estimate
both the numerator and the denominator.

P̂(Xi = xi |E = e) =
1
T

PT
t=1 �xi (z

t)w(z t)
1
T

PT
t=1 w(z t)
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Limitations of IS
l Does not work well if the proposal Q(x) is very different from 

P(x)
l Yet constructing a Q(x) similar to P(x) can be difficult

l Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample!

l Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal?
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Markov Chain Monte Carlo
l MCMC algorithms feature adaptive proposals

l Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 
sampled, and x is the previous sample

l As x changes, Q(x’|x) can also change (as a function of x’)

42

P(x)
Q(x)

Importance sampling with 
a (bad) proposal Q(x)

P(x)

MCMC with adaptive 
proposal Q(x’|x)

x1 x2 x3

Q(x2|x1)
Q(x3|x2) Q(x4|x3)

x1 x2x3



Metropolis-Hastings Algorithm
l Draws a sample x’ from Q(x’|x), where x is the previous sample
l The new sample x’ is accepted or rejected with some 

probability A(x’|x)
l This acceptance probability is

l A(x’|x) is like a ratio of importance sampling weights
l P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance 

weight for x
l We divide the importance weight for x’ by that of x
l Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) 

separately
l A(x’|x) ensures that, after sufficiently many draws, our samples will come 

from the true distribution P(x)
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Metropolis-Hastings Algorithm
1. Initialize starting state x(0), set t =0
2. Burn-in: while samples have “not converged”

l x=x(t)�t =t +1
l sample x* ~ Q(x*|x) // draw from proposal
l sample u ~ Uniform(0,1) // draw acceptance threshold

l If

l x(t) = x*  // transition
l else

l x(t) = x // stay in current state 

3. Take samples from P(x): Reset t=0, for t=1:N
l x(t+1) ß Draw sample (x(t))

4. Monte Carlo Estimation using these N final samples
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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Q(x1|x0)



The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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Q(x2|x1)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)

l We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3

We reject because P(x’)/P(x2) is very small, 
hence A(x’|x2) is close to zero!



The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
l Example:

l Let Q(x’|x) be a Gaussian centered on x (it is symmetric)
l We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

Draw, accept x5

x0

Q(x3|x2)

x1 x2

x3
x4 x5

The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)!
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Theoretical Aspects of MCMC

l Why are the MH samples guaranteed to be from P(x)?
l The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)?

l What are good, general-purpose, proposal distributions?
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l The MH algorithm has a “burn-in”/“warm-up” period. We throw 
away all the samples we get from this period. Why?



Markov Chains
l A Markov Chain is a sequence of random variables 

x(1),x(2),…,x(t) with the Markov Property

l is known as the transition kernel (just a matrix for 
discrete random variables) 

l The whole process is completely determined by the transition kernel and 
the initial state. The next state depends only on the preceding state 

l Note: the random variable x(i) can be vectors

l We define x(t) to be the t-th sample of all variables in our model

l We study homogeneous Markov Chains, in which the 
transition kernel                                is fixed with time
l To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state
55
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Markov Chains
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X1=0
X2=0

X1=1
X2=0

X1=1
X2=1

X1=0
X2=1

0.5

0.25 =                 = T ( x’ = (1,0) | x=(0,1) ) 

0.25

0.8

0.1

1

0.5

0.5

)|( xxT ¢

Initialize the simulation in one state (or randomly) x(0)

Randomly pick an outgoing edge (sample x(1) given x(0) =(1,1) )

x(1)

x(2)

x(3)

0.1

Markov Chain Sampling = 
simulating the dynamics of 
a Markov Chain

x(n)x(n-1)x(0) …
x(0)



Markov Chain Concepts
l To understand MCs, we need to define a few concepts:

l Probability distributions over states:              is a distribution over the 
state of the system x, at time t

l When dealing with MCs, we don’t think of the system as being in one 
state, but as having a distribution over states

l Here x represents all variables

l Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transit the entire distribution:

l At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’.
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Markov Chains
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Markov Chains
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Markov Chains
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Stationary Distribution
l is stationary if it does not change under the transition 

kernel

l A MC is reversible if there exists a distribution           such that 
the detailed balance condition is satisfied:

l This is saying under the distribution , the probability of x’→x is the 
same as x→x’

l Theorem: is a stationary distribution of the MC if it is 
reversible
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Properties of Markov Chains
l Irreducible: an MC is irreducible if you can get from any state 

x to any other state x’ with probability > 0 in a finite number of 
steps
l i.e. there are no unreachable parts of the state space
l This property only depends on the transition kernel, not the initial state

l Aperiodic: an MC is aperiodic if you can return to any state i
at any time
l If there exists n such that for all n' ≥ n, Pr(x(n’) = i | x(0) = i) > 0

l Ergodic (or regular): an MC is ergodic if it is irreducible and 
aperiodic
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Examples
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Irreducible, periodic (each state 
visited every 3 iterations)
Limiting distribution does not exist

Reducible.
Limiting distribution depends 
on initial condition 

Irreducible, aperiodic.
Unique limiting distribution 
P(x) = [0.6, 0.4] 



Stationary Distribution
l Ergodicity implies you can reach the stationary distribution 

, no matter the initial distribution
l All good MCMC algorithms must satisfy ergodicity, so that you can’t 

initialize in a way that will never converge
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Why Does MH Work?
l Recall that we draw a sample x’ according to Q(x’|x), and then 

accept/reject according to A(x’|x).
l In other words, the transition kernel is

l We can prove MH is reversible, i.e. stationary distribution exists:
l Recall that

l Notice this implies the following:
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Why Does MH Work?

l Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have

l The last line is exactly the detailed balance condition
l In other words, the MH algorithm leads to a stationary distribution P(x)
l Recall we defined P(x) to be the true distribution of x
l If ergodic (irreducible & aperiodic), MH algorithm eventually converges 

to the true distribution
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Why Does MH Work?
l Theorem: If a Markov chain is ergodic and reversible with 

respect to P(x), then P(x) is its unique stationary distribution. 
The chain converges to the stationary distribution regardless 
of where it begins.

l The mixing time, or how long it takes to reach something 
close the stationary distribution, can’t be guaranteed.
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Gibbs Sampling
l Gibbs Sampling is a special case of the MH algorithm 
l Gibbs Sampling samples each random variable one at a time. 

Therefore, it has reasonable computation and memory 
requirements
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Gibbs Sampling Algorithm
l Suppose the model contains variables x1,…,xn

l Initialize starting values for x1,…,xn

l Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable xi in order:

1. Sample x ~ P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of 
xi given the current values of all other variables

2. Update xi ← x

l When we update xi, we immediately use its new value for 
sampling other variables xj
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Gibbs Sampling is MH
l The GS proposal distribution is

(x-i denotes all variables except xi)

l Applying Metropolis-Hastings with this proposal, we obtain:

GS is simply MH with a proposal that is always accepted
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Practical Aspects of MCMC

l How do we know if our proposal Q(x’|x) is good or not?
l Monitor the acceptance rate
l Plot the autocorrelation function
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Acceptance Rate

l Choosing the proposal Q(x’|x) is a tradeoff:
l “Narrow”, low-variance proposals have high acceptance, but take many 

iterations to explore P(x) fully because the proposed x are too close
l “Wide”, high-variance proposals have the potential to explore much of 

P(x), but many proposals are rejected which slows down the sampler

l A good Q(x’|x) proposes distant samples x’ with a sufficiently 
high acceptance rate
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P(x)
Q(x’|x)

Low-variance proposal
P(x)

Q(x’|x)

High-variance proposal



Acceptance Rate

l Acceptance rate is the fraction of samples that MH accepts.
l General guideline: proposals should have ~0.5 acceptance rate [1]

l Gaussian special case:
l If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is 

~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]
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Autocorrelation Function

l MCMC chains always show autocorrelation (AC)
l AC means that adjacent samples in time are highly correlated

l We quantify AC with the autocorrelation function of an r.v. x:

l High autocorrelation leads to smaller effective sample size!
l We want proposals Q(x’|x) with low autocorrelation
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Practical Aspects of MCMC

l How do we know if our proposal Q(x’|x) is any good?
l Monitor the acceptance rate
l Plot the autocorrelation function

l How do we know when to stop burn-in?
l Plot the sample values vs time
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Sample Values vs Time

l Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains)
l If the chains are well-mixed (left), they are probably converged
l If the chains are poorly-mixed (right), we should continue burn-in

l In practice, we usually start with multiple chains
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Summary
l Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x)

l Metropolis-Hastings allows you to specify any proposal Q(x’|x)
l But choosing a good Q(x’|x) is not easy

l Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)
l Acceptance rate is always 1!
l But remember that high acceptance usually entails slow exploration
l In fact, there are better MCMC algorithms for certain models

l Knowing when to halt burn-in is an art
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Thank you!
Q & A
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