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Sets

A set is just a collection of elements denoted e.g.,
S = {s1,s2,s3}, R = {r : some condition holds on r}.

» Intersection: the elements that are in both sets:
ANB={x:xe€Aand x € B}

» Union: the elements that are in either set, or both:
AUB={x:x€ Aor x € B}

» Complementation: all the elements that aren’t in the set:
AC = {x:x ¢ A}.




Sets

» A sequence of sets Ai, Ay ... is called pairwise disjoint or
mutually exclusive if for all i # j,A;NA; = {}.

> If the sequence is pairwise disjoint and |J;2; Ai = S, then the
sequence forms a partition of S.




What is Probability

e When we talk about probability, we are actually assuming
there is a probability space.
The probability space is discribed by the 3-tuple (2, F,P):
» Sample space 2 = “Set of all possible outcome w's";

» o-field F = collection of “events’ = subsets of €2;
Given event A e F, A occurs if and only if w € A;

» Probability P : 7 — [0, 1] maps events to real [0, 1]-values.

e Example of rolling a die
Q=14{1,2,3,4,5,6}
F=2%={{1},{2}...{1,2}...{1,2,3}...{1,2,3,4,5,6}, {}}
P({1}) = P({2}) = ... = ¢ (i.e., a fair die)
P({1,3,5}) = 3 (i.e., half chance of odd result)
P({1,2,3,4,5,6}) =1 (i.e., result is “almost surely” one of the faces).



Axioms of Probability

e Three axioms and corresponding

A set of conditions imposed on probability measures (due to
Kolmogorov)

» P(A) > 0,YAe F
» P(2)=1
» P(UZ Ai) = >0 P(A;) where {A;}%2, € F are pairwise
disjoint.
These quickly lead to:
> P(AC) =1 — P(A) (since P(A) + P(A®) = P(AU A%) = P(Q) = 1).
» P(A) <1 (since P(A°) > 0).
> P({}) = 0 (since P(Q) = 1).




Conditional Probabilitie

For events A, B € F with P(B) > 0, we may write the

conditional probability of A given B:

P(AB) = P(;‘(g)B)

Interpretation: the outcome is definitely in B, so treat
B as the entire sample space and find the probability
that the outcome is also in A.




Independence

Two events A, B are called independent if P(ANB) = P(A)P(B).
When P(A) > 0 this may be written P(B|A) = P(B) (why?)

Two events A, B are called conditionally independent given C
when P(AN B|C) = P(A|C)P(B|C).

When P(A) > 0 we may write P(B|A, C) = P(B|C)

The difference is important. Later, we will need this to understand the Markov Chain.



Bayes’ Rule

Using the chain rule we may see:

P(A|B)P(B) = P(ANB) = P(B|A)P(A)

Rearranging this yields Bayes’ rule:

P(B|A) = P(ALEZ)L\F))(B)
Often this is written as:
P(A|B;)P(B;)

PBiIA) = >_i P(A|B;)P(B;)

Where B; are a partition of 2 (note the bottom is just the law of
total probability).
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Random Variables

e A random variable X is just a function: X : Q — R¢

Intuitively, a random variable is a variable that takes on its values
by chance. (Usually denoted by capital letters X, Y, Z...)

Can be described by the probability mass function
Discrete: ]P(X = X,') =pjfori=1,2,...
e.g. Bernoulli, Binomial, Geometric, Poisson, etc.

Can be described by the probability density function
Continuous: P(a< X < b) = Sg f(x)dx.
e.g. Exponential, Normal, Beta, etc.

Singular: Can not be described by either. Not useful.

Nonetheless, a random variable can always be determined by its
cumulative distribution function F(x) = P(X < x).
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Joint Distributions

We may consider multiple functions of the same sample space,
e.g., X(w) = 1a(w), Y(w) = 1p(w):

May represent the joint distribution as a
table:

X=0 | X=1
Y=0 | 0.25 | 0.15
Y=1| 035 | 0.25

We write the joint PMF or PDF as fx y(x,y)
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Independent Distributions

e \We talked about independent events. Now we can extend the

same idea to random variables
Two random variables are called independent when the joint PDF
factorizes:

fx,v(x,y) = fx(x)fy(y)

When RVs are independent and identically distributed this is
usually abbreviated to “i.i.d.”

Relationship to independent events: X, Y ind. iff

{w: X(w) < x},{w: Y(w) < y} are independent events for all x, y.

2 2
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Marginalizing and Conditioning

e Given a joint distribution of more than one random variable,
we can find the distribution of one random variable

PX=x)=) P(X=x,Y=y)=) P(X=x|Y=y)P(Y=y)

e \We can also find the distribution of one random variable
conditioning on the other random variable

P(X=x,Y=y)  joint pmf
P(Y =y) ~ marginal pmf

P(X=x|Y =y)=
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Expectation and Variance

We may consider the expectation (or “mean”) of a distribution:

E(X) = > Xfx(x) X is discrete
[7 xfx(x) dx  Xis continuous

We may consider the variance of a distribution:

Var(X) = E(X — EX)?

This may give an idea of how “spread out” a distribution is.
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Markov Inequality

» Markov inequality: If X > 0, then for any ¢ > 0,

IEX

P(X > ¢) < .

e This inequality is telling us a random variable can't be too
different from its mean. Note: we know nothing about the
distribution of X!
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Law of Large Numbers (LLN)

e LLN describes the asymptotic behavior of the sample mean.

Recall our variable X,, = 1 S X

~—n
We may wonder about its behavior as n — oc.

We had: EX, = u, Var(X,) = <.

Distribution appears to be “contracting:” as n increases, variance
Is going to 0.

The weak law of large numbers:

lim P(|X, — pu| <e€)=1

n—aoo

In English: choose ¢ and a probability that [ X, — | < ¢, | can find you
an n so your probability is achieved.



Central Limit Theorem (CLT)

e Similarly to LLN, CLT also describes the asymptotic behavior

of the sample mean.
The distribution of X,, also converges weakly to a Gaussian,

im Xn —H
n— oo O'/\/ﬁ

Simulated n dice rolls and took average, 5000 times:

~ N(0,1)
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LLN v.s. CLT

e How are these two different?

Recall our variable X, = %27:1 Xi EX, = p,Var(X,) = Z

e As n goes to infinity
¢ LN PRy~ pl <€) =1

Xn —H
a/vn

e CLT:

~ N(0,1)

e The converges rates are different!

e Another way to understand it is that we standardized the
random variable first before taking n to infinity.
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Markov Chains

e We will see it when we get to the MCMC part later.
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Probabilistic Inference

e Many tasks actually boil down to inference tasks, and we can
further reduce them to answering probability queries.
e The notation we will use through out this talk

some random variables X, some evidence variables E (variables we have
observed), all the unobserved variables Z = X — E.

e Some questions we can ask
Marginal probability: what is P(E=e)?
Conditional/Posterior probability: what is P(X_i=x | E=e)?
e Examples:

e All the classification problems can fit in to this framework, e.g. node
classification on graphs, P(label of X | labels of neighbours of X)?

e Language model: P(X3="mathematics” | X1="I", X2="like")?
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Why Approximate Inference?

e For real world problems with many random variable, doing
exact inference is computationally intractable.

e Approximation is useful:
Suppose the ground truth is P(Z=z | E=€)=0.29292, and the approximate
inference yields P(Z=z | E=e) = 0.3. This might be good enough for

many applications.
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Approximate Inferenc

e Two main families of approximate inference algorithms:
e Variational algorithms
e Monte-Carlo sampling methods

e The basic idea of sampling method is to approximate a
probability distribution using a small number of states that are
“representative” of the entire probability distribution
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How to generate a sample?

@ Given a set of variables X = {Xi,...,X,}, a sample x = (x1,...,x,) is an
an assignment to all variables (also called an instantiation or a state)

@ How to randomly generate a sample/state according to probabilities
assigned by P(x)?

@ Algorithm to draw a sample from a wnivariate distribution P(X). A sample
is just an assignment to X. Domain of X = {a%,...,ak"1}

© Divide a real line [0, 1] into k intervals such that the width 6; of the
j-th interval is equal to P(X = &)

@ Draw a random number r € [0, 1]

© Determine the region j in which r lies. Output &/
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Monte Carlo Estimation

© Express the quantity of interest as the expected value of a
random variable.

Ex~prlg(x)] = ZE(X)P(X)

@ Generate T samples x!,...,x" from the distribution P with respect

to which the expectation was taken.
© Estimate the expected value from the samples using:

T

. 1

g(xla°'° 7XT) = ?Zg(xt)
t=1

where x!, ..., x" are independent samples from P. Note: g is a

random variable. Why?
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Properties of the Monte Carlo

@ Unbiased:
Eplg] = Eplg(x)]

@ Convergence: By law of large numbers
1T
&== ; g(x") = Ep[g(x)] for T — oo

@ Variance:
-

% > g(xh)

t=1

Velg(x)]

Vp(g] = VP T

Thus, variance of the estimator can be reduced by increasing the
number of samples. We have no control over the numerator when P
is given. How quickly does the estimate converge to the true
expectation?
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Rejection Samplin

7T
Nk

-1 1

Suppose you want to sample points uniformly within the circle

You have access to a uniform random generator in [—1, 1]

Sample x ~ U[—1, 1]

Sample y ~ U[—1,1]

If x° + y? < 1, accept the sample. Otherwise reject it and try again.
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Rejection Sampling

@ Express P(E = e) as an expectation:
P(E=¢) = ) de(x)P(x) = Ep[de(x)]

where d.(x) is an indicator function which is 1 if x is consistent with
the evidence E = e and 0 otherwise.

@ Generate samples
o Monte Carlo estimate g(xi, -+ ,x7) = 7 ZtT:l g(x*t):

15(E o) = Number of samples that have E = e

Total number of samples

o Issues: If P(E = e) is very small (e.g., 107°°), nearly all samples will
be rejected.

o Note: even if P(E = e) is extremely small,
p(X =x| E=¢€)=p(X =x,E=¢e)/p(E = e) can be large.




Failure Case

Suppose you want to sample points uniformly within the circle

You have access to a uniform random generator in [—1,1]

Sample x ~ U[—1,1], sample y ~ U[—1,1]

If (x,y) is in the circle, accept the sample. Otherwise reject it and try
again.

@ Can be extremely inefficient if the circle is small

@ A conditional probability is like the ratio between the red vs. gray
circle areas. Can we sample directly inside the gray circle?

34



Importance Sampling

@ l|dea: evidence variables are fixed, so let’s just sample over non-evidence ones

@ Idea: use a proposal distribution over non-evidence variables
Q(Z = X'\ E) that we can efficiently sample from and such that
P(Z=2z,E=¢€¢)>0= Q(Z=2z)>0. Express P(E = e) as follows:

P(E=e) = ) P(Z=zE=e)

Q(Z = z)
= E P(Z=zE=c¢e
. ( ) Q(Z = z)
P(Z=2zE = e)]
= E = Eg|w(z
o | s o[w(2)
@ Generate samples from Q and estimate P(E = e) using the following
Monte Carlo estimate:
T T
A 1 P(Z=z',E=¢) 1
P E = = — ’ = — t
(E=e)=7 Zt_l QAZ = 2) T Zt_l w(z)

where (z1,...,z") are sampled from Q. .



Ideal Proposal Distribution

@ For optimum performance, the proposal distribution @ should be as
close as possible to P(Z|E = e).
o When Q = P(Z|E = e), the weight of every sample is P(E = e)!
w(2t) — P(Z=z,E=e) _ P(Z=z'E=e)
Q(Z = zt) P(Z = zt|E = e)
P(Z =zt E = e)P(E = e)
P(Z=zt,E = e)
= P(E =e)

o Weight does not depend on z*
e One sample would be sufficient!
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Issue of Importance Sampling

@ (Un-normalized) IS is not suitable for estimating P(X; = x;|E = e).

@ One option: Estimate the numerator and denominator by IS.

P(Xi=xi,E =e)
P(E = e)

/,:\)(X, = X,'lE = e) =

@ This ratio estimate can be inaccurate because errors in the numerator
and denominator may be cumulative.

e For example, if the numerator is an under-estimate and the
denominator is an over-estimate.
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Normalized Importance Sampling

@ Partition the variables into evidence E and non-evidence /Z
@ Given an indicator function d,.(z) (which is 1 if z is consistent with

Xi = x; and 0 otherwise), we can write P(X; = x;|E = e) as:

P(X, :X,',E: 6) . ZZ5XI.(Z)P(Z = Z,E = e)
P(E = e) - S _P(Z=z,E=c¢)

P(X, :X,"E = e)

@ Now we can use the same @ and same samples from it to estimate
both the numerator and the denominator.
1 T 5 t t
A =3 0 (Z2H)w(z
P(X; = x|E = e) = T2zt 0n(Z)MZ)
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Limitations of IS

e Does not work well if the proposal Q(x) is very different from
P(x)
e Yet constructing a Q(x) similar to P(x) can be difficult

e Making a good proposal usually requires knowledge of the analytic form
of P(x) — but if we had that, we wouldn’t even need to sample!

e Intuition: instead of a fixed proposal Q(x), what if we could use
an adaptive proposal?
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Markov Chain Monte Carlo

e MCMC algorithms feature adaptive proposals

e Instead of Q(x’), they use Q(x’|x) where X’ is the new state being
sampled, and x is the previous sample

e As x changes, Q(x'|x) can also change (as a function of x’)

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x proposal Q(x’|x)

P(x
Q(x) ) Q(3[x2) Qx4|x3)
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Metropolis-Hastings Algorithm

e Draws a sample x’ from Q(x’|x), where x is the previous sample

e The new sample x' is accepted or rejected with some
probability A(X’|x)

e This acceptance probability is

A(x.x):mm[l P(X')Q(XIX')J

" P(x)Q(x'] x)
e A(X'|x) is like a ratio of importance sampling weights

P(x')/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance
weight for x

We divide the importance weight for x’ by that of x

Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x)
separately

e A(X'|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x)
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Metropolis-Hastings Algorithm

1. Initialize starting state X9, set t =0

2. Burn-in: while samples have “not converged”
o x=xU, t=t+1 \
e sample x* ~ QX x*|x) // draw from proposal
e sample v~ Uniform(0,1) // draw acceptance threshold

w1y _ o[ PF)O(x | x¥) Function
o [hws ATy =mn (1’ P(x)Q(x*|x)] > Draw sample (x(t))

XU = x* [/ transition

e else
XY = x [ stay in current state )

3. Take samples from P(x): Reset t=0, for t=1:N
e Xx(t+1) € Draw sample (x(t))

4.  Monte Carlo Estimation using these N final samples
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The

A x) = min[l, P(r)Q(x ")
P(NQ(x'| )

|

MH Algorithm

e Example:

Initialize x©)

Let Q(x'|x) be a Gaussian centered on x (it is symmetric)
We're trying to sample from a bimodal distribution P(x)
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The MH Algorithm

e Example:

A(x'|x) = mln[

| PO | x)

~P(x)0(x' %)

|

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)

e We’'re trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x'
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The MH Algorithm

e Example:

A(x'|x) = mln[

| PO | x)

~P(x)0(x' %)

|

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)

e We’'re trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x'
Draw, accept x?
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| PO ] x')}
P0G x)

A(x'|x) = mln[

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©

Draw, accept x'

Draw, accept x? P(x)
Draw but reject; set x3=x2

3
x! x0 x2 x (rejected)
3
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The MH Algorithm

e Example:

| PO ] x'))
P0G x)

A(x'|x) = mln[

e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©

Draw, accept x’

Draw, accept x?

Draw but reject; set x3=x2

We reject because P(x’)/P(x?) is very small,
hence A(X’|x?) is close to zero!

P(x)

3
x! x0 x2 x (rejected)
3

49



| PO ] x'))
P0G x)

A(x'|x) = mln[

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x’

Draw, accept x? P(x)
Draw but reject; set x3=x2

Draw, accept x*

50



A(x'x):min[l P(X')Q(XIX')]

~P(x)0(x' %)

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

Initialize x©
Draw, accept x’

Draw, accept x? P(x)
Draw but reject; set x3=x2

Draw, accept x*
Draw, accept x°
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~P(x)0(x' %)

A(x.x):mm[l P(X')Q(XIX')j

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x (it is symmetric)
e We're trying to sample from a bimodal distribution P(x)

The adaptive proposal Q(x’|x) allows

B\itialize x© . us to sample both modes of P(x)!
raw, accept x

Draw, accegt X2 P(x)

Draw but reject; set x3=x2

Draw, accept x*

Draw, accept x°
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Theoretical Aspects of MCMC

e The MH algorithm has a “burn-in"/*warm-up” period. We throw
away all the samples we get from this period. Why?

e Why are the MH samples guaranteed to be from P(x)?

e The proposal Q(x’|x) keeps changing with the value of x; how do we
know the samples will eventually come from P(x)?

e What are good, general-purpose, proposal distributions?
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Markov Chains

e A Markov Chain is a sequence of random variables

xM x@), ... x® with the Markov Property
e O~O~0~O

PO =x|xW . x ) =P =x[x"Y)  x@ e xen o

o P(x(t) =X | X(H)) is known as the transition kernel (just a matrix for
discrete random variables)

e The whole process is completely determined by the transition kernel and
the initial state. The next state depends only on the preceding state

e Note: the random variable x() can be vectors
We define x® to be the t-th sample of all variables in our model

e We study homogeneous Markov Chains, in which the
transition kernel p(x' = x| x"™ = x) is fixed with time

e Toemphasize this, we will call the kernel (" | y) , where x is the
previous state and x’ is the next state
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Markov Chains

Markov Chain Sampling =
simulating the dynamics of
a Markov Chain

0-0-O-0O

x(0) . x(n-1) x(n)

Randomly pick an outgoing edge (sample x{") given x( =(1,1) )

Initialize the simulation in one state (or randomly) x(© s



Markov Chain Concepts

e To understand MCs, we need to define a few concepts:

e Probability distributions over states: 7' (x) is a distribution over the
state of the system x, at time t

When dealing with MCs, we don’t think of the system as being in one
state, but as having a distribution over states

Here x represents all variables

e Transitions: recall that states transition from x® to x*1) according to the
transition kernel T(x'|x) . We can also transit the entire distribution:

(=), 7 ()T (x| x)
At time t, state x has probability mass 1((x). The transition probability
redistributes this mass to other states x'.

O~O~0—0

x(O) - x(t) x(t+1)

s (x0) Al (x) ) (x")
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Markov Chains

) =T (x’ = (1,0) | x=(0,1) )

79 (x)

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

Initialize the simulation in one state x(® 58



Markov Chains

) =T (x’ = (1,0) | x=(0,1) )

0.5 0.5

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

Initialize the simulation in one state x(® 50



Markov Chains

) =T (x’ = (1,0) | x=(0,1) )

o) 0.4 0.55
7 (x) 0.05

|

X4=0 X4=0 X4=1 X4=1
X2=0 X2=1 X2=0 X2=1

stationary if it does not change

Initialize the simulation in one state x(® 60



Stationary Distribution

e m(x) is stationary if it does not change under the transition
kernel T(x'|x)

r(x')=) ()T (x'|x) forallx

e A MC is reversible if there exists a distribution 7(x) such that
the detailed balance condition is satisfied:
7(xNT (x| x)=m(x)T(x"|x)
e This is saying under the distribution 7 (x), the probability of X —x is the
same as Xx—Xx’

e Theorem: 7(x)is a stationary distribution of the MC if it is
reversible
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Properties of Markov Chains

e Irreducible: an MC is irreducible if you can get from any state

x to any other state x’ with probability > 0 in a finite number of
steps

e i.e. there are no unreachable parts of the state space

e This property only depends on the transition kernel, not the initial state

e Aperiodic: an MC is aperiodic if you can return to any state i
at any time

e |If there exists n such that for all n'=2 n, Pr(x™ =i | x©® =i)>0

e Ergodic (or regular): an MC is ergodic if it is irreducible and
aperiodic
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Examples

05
NS TN AN
I_,,If\\_l / l \%2 %

D ]
S~
(3] (4 )

1 l‘\, ) lk../"'

Reducible.

Limiting distribution depends
on initial condition

Irreducible, periodic (each state

visited every 3 iterations)
Limiting distribution does not exist

Irreducible, aperiodic.
Unique limiting distribution
P(x) =[0.6, 0.4]
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Stationary Distribution

e Ergodicity implies you can reach the stationary distribution
z,,(x), no matter the initial distribution 7 (x)

e All good MCMC algorithms must satisfy ergodicity, so that you can't
initialize in a way that will never converge
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Why Does MH Work?

e Recall that we draw a sample x’ according to Q(x’|x), and then
accept/reject according to A(x’|x).
e In other words, the transition kernel is

T'(x'[x)=0(x'[x)4(x'| x)

e We can prove MH is reversible, i.e. stationary distribution exists:

e Recall that | e P(x’)Q(x|x’)
A(”)‘mmﬁl’ P(x)Q(x'IX)]

e Notice this implies the following:

£ A x) <] then LOOCOTIN) s A(x |2 =1
P(x")Q(x|x)
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Why Does MH Work?

£ A1) <1 then LOQETO 1 thus A(x[x) =1
P(x")O(x | x")

e Now suppose A(X'|x) <1 and A(x|x") = 1. We have
AGe] ) = PEIQG 1)
P(x)O(x"] x)
P(x)O(x" | x)A(x'| x) = P(x")O(x | x7)
P(x)O(x" | x)A(x'| x) = P(x")O(x | x") A(x | x)
P(x)T (x| x) = P(x")T (x| x')
e The last line is exactly the detailed balance condition
e In other words, the MH algorithm leads to a stationary distribution P(x)
e Recall we defined P(x) to be the true distribution of x

e If ergodic (irreducible & aperiodic), MH algorithm eventually converges
to the true distribution

67



Why Does MH Work?

e Theorem: If a Markov chain is ergodic and reversible with
respect to P(x), then P(x) is its unique stationary distribution.
The chain converges to the stationary distribution regardless
of where it begins.

e The mixing time, or how long it takes to reach something
close the stationary distribution, can’t be guaranteed.
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Agenda

e Probability Review

e Approximate Inference
e Monte Carlo and Importance Sampling
e Markov Chain Monte Carlo (MCMC)
Theoretical Aspects of MCMC
e Gibbs Sampling and Practical MCMC <{z==
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Gibbs Sampling

e Gibbs Sampling is a special case of the MH algorithm

e Gibbs Sampling samples each random variable one at a time.
Therefore, it has reasonable computation and memory
requirements
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Gibbs Sampling Algorithm

e Suppose the model contains variables x,...,X,
e [nitialize starting values for xy,...,Xx,

e Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable x; in order:

Sample x~ P(x; | X4, ..., Xi-1, Xi+1, ---, Xn), I.€. the conditional distribution of
X; given the current values of all other variables

Update x; « X

e \When we update x;, we immediately use its new value for
sampling other variables x;
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Gibbs Sampling is MH

e The GS proposal distribution is
Q(xi,ax—i ‘ xiax—i) = P(xi' ’ X—i)
(x.; denotes all variables except x;)

o Applying Metropolis-Hastings with this proposal, we obtain:

A(x;ax_l-|xi,x_l.):mjn ID(XZ’X )Q('xlax xi9x—i)
P(XZ,X )Q(XZ,X_Z Xl.,X_.)

=min[1, 1f><x;,x,-)1f><xix»j:min | PG X )P(x)P(x, | )j
P(x,,x_)P(x]|X_,) "P(x, |x_)P(x_)P(x]] X))
= min (1,1)=1

GS is simply MH with a proposal that is always accepted
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Practical Aspects of MCMC

e How do we know if our proposal Q(x’|x) is good or not?
e Monitor the acceptance rate
e Plot the autocorrelation function
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Choosing the proposal Q(x'|x) is a tradeoff:

e “Narrow”, low-variance proposals have high acceptance, but take many
iterations to explore P(x) fully because the proposed x are too close

e “Wide”, high-variance proposals have the potential to explore much of
P(x), but many proposals are rejected which slows down the sampler

e A good Q(x'|x) proposes distant samples x’ with a sufficiently
high acceptance rate
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Acceptance rate is the fraction of samples that MH accepts.
e General guideline: proposals should have ~0.5 acceptance rate [1]

e (Gaussian special case:

e If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is
~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Autocorrelation Function

Low autocorrelation ~_ High autocorrelation

Autocorrelation Rl(k)

Autocorrelation Rl(k)

0 10 20 k 80 20 100 "o 10 20 30 40 72 60
e MCMC chains always show autocorrelation (AC)
e AC means that adjacent samples in time are highly correlated

e We quantify AC with the autocorrelation function of an r.v. x:

S, — D)4~ )
R(k)="T

k
(xz - f)z
t=1

e High autocorrelation leads to smaller effective sample size!
e We want proposals Q(x’|x) with low autocorrelation
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Practical Aspects of MCMC

e How do we know if our proposal Q(x’|x) is any good?
e Monitor the acceptance rate
e Plot the autocorrelation function

e How do we know when to stop burn-in?
e Plot the sample values vs time
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Sample Values vs Time
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Monitor convergence by plotting samples (of r.v.s) from
multiple MH runs (chains)

e If the chains are well-mixed (left), they are probably converged
e If the chains are poorly-mixed (right), we should continue burn-in

In practice, we usually start with multiple chains
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Summary

e Markov Chain Monte Carlo methods use adaptive proposals
Q(x’|x) to sample from the true distribution P(x)

e Metropolis-Hastings allows you to specify any proposal Q(x’|x)
e But choosing a good Q(x’|x) is not easy

e Gibbs sampling sets the proposal Q(x’|x) to the conditional
distribution P(x’|x)
e Acceptance rate is always 1!
e But remember that high acceptance usually entails slow exploration
e Infact, there are better MCMC algorithms for certain models

e Knowing when to halt burn-in is an art
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Thank you!
Q&A




