

Ermon, Yumeng Zhang (Stanford), and David Sontag (MIT)

Agenda

- Probability Review
- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC
	- **Gibbs Sampling and Practical MCMC**

Agenda

• Probability Review

- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC
	- **Gibbs Sampling and Practical MCMC**

Sets

A set is just a collection of elements denoted e.g.,

 $S = \{s_1, s_2, s_3\}, R = \{r :$ some condition holds on r.

- Intersection: the elements that are in both sets: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Union: the elements that are in either set, or both: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- \triangleright Complementation: all the elements that aren't in the set: $A^C = \{x : x \notin A\}.$

Sets

- A sequence of sets $A_1, A_2 \ldots$ is called **pairwise disjoint** or **mutually exclusive** if for all $i \neq j$, $A_i \cap A_j = \{\}.$
- If the sequence is pairwise disjoint and $\bigcup_{i=1}^{\infty} A_i = S$, then the sequence forms a partition of S .

What is Probability

• When we talk about probability, we are actually assuming there is a probability space.

The probability space is discribed by the 3-tuple $(\Omega, \mathcal{F}, \mathbb{P})$:

- Sample space $\Omega =$ "Set of all possible outcome ω 's";
- \triangleright σ -field \mathcal{F} = collection of "events" = subsets of Ω ; Given event $A \in \mathcal{F}$, A occurs if and only if $\omega \in A$;
- Probability $\mathbb{P}: \mathcal{F} \to [0,1]$ maps events to real $[0,1]$ -values.
- Example of rolling a die

 $\Omega = \{1, 2, 3, 4, 5, 6\}$ $\mathcal{F} = 2^{\Omega} = \{ \{1\}, \{2\}, \ldots \{1, 2\}, \ldots \{1, 2, 3\}, \ldots \{1, 2, 3, 4, 5, 6\}, \{\} \}$ $P({1}) = P({2}) = ... = \frac{1}{6}$ (i.e., a fair die) $P({1, 3, 5}) = \frac{1}{2}$ (i.e., half chance of odd result) $P({1, 2, 3, 4, 5, 6}) = 1$ (i.e., result is "almost surely" one of the faces).

Axioms of Probability

Three axioms and corresponding

A set of conditions imposed on probability measures (due to Kolmogorov)

- \blacktriangleright $P(A) \geq 0, \forall A \in \mathcal{F}$
- \blacktriangleright $P(\Omega) = 1$
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ where $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$ are pairwise disjoint.

These quickly lead to:

- $P(A^C) = 1 P(A)$ (since $P(A) + P(A^C) = P(A \cup A^C) = P(\Omega) = 1$).
- \blacktriangleright $P(A) \leq 1$ (since $P(A^C) \geq 0$).
- $P({\}) = 0$ (since $P(\Omega) = 1$).

Conditional Probabilities

For events $A, B \in \mathcal{F}$ with $P(B) > 0$, we may write the conditional probability of A given B:

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}
$$

Interpretation: the outcome is definitely in B , so treat B as the entire sample space and find the probability that the outcome is also in A .

Independence

Two events A, B are called **independent** if $P(A \cap B) = P(A)P(B)$. When $P(A) > 0$ this may be written $P(B|A) = P(B)$ (why?)

Two events A, B are called **conditionally independent given** C when $P(A \cap B|C) = P(A|C)P(B|C)$.

When $P(A) > 0$ we may write $P(B|A, C) = P(B|C)$

The difference is important. Later, we will need this to understand the Markov Chain.

Bayes' Rule

Using the chain rule we may see:

$$
P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)
$$

Rearranging this yields Bayes' rule:

$$
P(B|A) = \frac{P(A|B)P(B)}{P(A)}
$$

Often this is written as:

$$
P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}
$$

Where B_i are a partition of Ω (note the bottom is just the law of total probability).

Random Variables

• A random variable X is just a function: $X:\Omega\to\mathbb{R}^d$

Intuitively, a random variable is a variable that takes on its values by chance. (Usually denoted by capital letters $X, Y, Z...$)

Can be described by the **probability mass function** $\mathbb{P}(X = x_i) = p_i$ for $i = 1, 2, ...$ Discrete: e.g. Bernoulli, Binomial, Geometric, Poisson, etc. Can be described by the **probability density function** $\mathbb{P}(a \leqslant X \leqslant b) = \int_{2}^{b} f(x) dx.$ Continuous: e.g. Exponential, Normal, Beta, etc.

Singular: Can not be described by either. Not useful.

Nonetheless, a random variable can always be determined by its cumulative distribution function $F(x) = \mathbb{P}(X \leq x)$.

Joint Distributions

We may consider multiple functions of the same sample space, e.g., $X(\omega) = 1_A(\omega)$, $Y(\omega) = 1_B(\omega)$:

May represent the joint distribution as a table:

We write the joint PMF or PDF as $f_{X,Y}(x, y)$

Independent Distributions

We talked about independent events. Now we can extend the same idea to random variables

Two random variables are called **independent** when the joint PDF factorizes:

$$
f_{X,Y}(x,y)=f_X(x)f_Y(y)
$$

When RVs are independent and identically distributed this is usually abbreviated to "i.i.d."

Relationship to independent events: X, Y ind. iff

 $\{\omega: X(\omega) \leq x\}, \{\omega: Y(\omega) \leq y\}$ are independent events for all x, y.

Marginalizing and Conditioning

• Given a joint distribution of more than one random variable, we can find the distribution of one random variable

$$
P(X = x) = \sum_{y} P(X = x, Y = y) = \sum_{y} P(X = x | Y = y) P(Y = y)
$$

• We can also find the distribution of one random variable conditioning on the other random variable

$$
P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{\text{joint pmf}}{\text{marginal pmf}}
$$

Expectation and Variance

We may consider the expectation (or "mean") of a distribution:

$$
E(X) = \begin{cases} \sum_{x} x f_X(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ is continuous} \end{cases}
$$

We may consider the **variance** of a distribution:

$$
\text{Var}(X) = E(X - EX)^2
$$

This may give an idea of how "spread out" a distribution is.

Markov Inequality

• Markov inequality: If $X \ge 0$, then for any $c \ge 0$,

$$
\mathbb{P}(X \geqslant c) \leqslant \frac{\mathbb{E}X}{c}.
$$

• This inequality is telling us a random variable can't be too different from its mean. Note: we know nothing about the distribution of X!

Law of Large Numbers (LLN)

LLN describes the asymptotic behavior of the sample mean.

Recall our variable $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. We may wonder about its behavior as $n \to \infty$.

We had:
$$
E\overline{X}_n = \mu
$$
, $Var(\overline{X}_n) = \frac{\sigma^2}{n}$.

Distribution appears to be "contracting:" as *n* increases, variance is going to 0.

The weak law of large numbers:

$$
\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1
$$

In English: choose ϵ and a probability that $|\bar{X}_n - \mu| < \epsilon$, I can find you an n so your probability is achieved.

Central Limit Theorem (CLT)

Similarly to LLN, CLT also describes the asymptotic behavior of the sample mean.

The distribution of \bar{X}_n also converges weakly to a Gaussian,

$$
\lim_{n\to\infty}\ \frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)
$$

Simulated *n* dice rolls and took average, 5000 times:

LLN v.s. CLT

How are these two different?

Recall our variable $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ $E \bar{X}_n = \mu$, Var $(\bar{X}_n) = \frac{\sigma^2}{n}$

• As n goes to infinity

•
$$
\text{LLN: } P(|\bar{X}_n - \mu| < \epsilon) = 1
$$

• CLT:
$$
\frac{X_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)
$$

- The converges rates are different!
- ^l Another way to understand it is that we standardized the random variable first before taking n to infinity.

Markov Chains

• We will see it when we get to the MCMC part later.

Agenda

- **Probability Review**
- Approximate Inference

- Monte Carlo and Importance Sampling
- Markov Chain Monte Carlo (MCMC)
	- Theoretical Aspects of MCMC
- **Gibbs Sampling and Practical MCMC**

Probabilistic Inference

- Many tasks actually boil down to inference tasks, and we can further reduce them to answering probability queries.
	- \bullet The notation we will use through out this talk
		- \bullet some random variables X, some evidence variables E (variables we have observed), all the unobserved variables $Z = X - E$.
	- Some questions we can ask
		- Marginal probability: what is $P(E=e)$?
		- Conditional/Posterior probability: what is $P(X|i=x | E=e)$?
- Examples:
	- All the classification problems can fit in to this framework, e.g. node classification on graphs, P (label of X | labels of neighbours of X)?
	- l Language model: P(X3="mathematics" | X1="I", X2="like")?

Why Approximate Inference?

- For real world problems with many random variable, doing exact inference is computationally intractable.
- Approximation is useful:
	- Suppose the ground truth is $P(Z=z | E=e)=0.29292$, and the approximate inference yields $P(Z=z \mid E=e) = 0.3$. This might be good enough for many applications.

Approximate Inference

- Two main families of approximate inference algorithms:
	- Variational algorithms
	- Monte-Carlo sampling methods
- The basic idea of sampling method is to approximate a probability distribution using a small number of states that are "representative" of the entire probability distribution

Agenda

- **Probability Review**
- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC
	- **Gibbs Sampling and Practical MCMC**

How to generate a sample?

- Given a set of variables $X = \{X_1, \ldots, X_n\}$, a sample $x = (x_1, \ldots, x_n)$ is an an assignment to all variables (also called an instantiation or a state)
- \bullet How to randomly generate a sample/state according to probabilities assigned by $P(x)$?
- Algorithm to draw a sample from a *univariate* distribution $P(X)$. A sample is just an assignment to X. Domain of $X = \{a^0, \ldots, a^{k-1}\}\$
	- **O** Divide a real line [0, 1] into k intervals such that the width θ_i of the j-th interval is equal to $P(X = a^{j})$
	- **2** Draw a random number $r \in [0, 1]$
	- Determine the region j in which r lies. Output a^j

Monte Carlo Estimation

Express the quantity of interest as the expected value of a \bullet random variable.

$$
E_{x \sim P}[g(x)] = \sum_{x} g(x)P(x)
$$

- **2** Generate T samples x^1, \ldots, x^T from the distribution P with respect to which the expectation was taken.
- Estimate the expected value from the samples using:

$$
\hat{g}(\mathbf{x}^1, \cdots, \mathbf{x}^{\mathcal{T}}) \triangleq \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} g(\mathbf{x}^t)
$$

where x^1, \ldots, x^T are independent samples from P. Note: \hat{g} is a random variable. Why?

Properties of the Monte Carlo

Unbiased:

$$
E_P[\hat{g}] = E_P[g(x)]
$$

• Convergence: By law of large numbers

$$
\hat{g} = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} g(x^t) \to E_{P}[g(x)] \,\, \text{for} \,\, \mathcal{T} \to \infty
$$

Variance:

$$
V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)\right] = \frac{V_P[g(x)]}{T}
$$

Thus, variance of the estimator can be reduced by increasing the number of samples. We have no control over the numerator when *P* is given. How quickly does the estimate converge to the true expectation?

Rejection Sampling Rejection Sampling

- Suppose you want to sample points uniformly within the circle
- \bullet You have access to a uniform random generator in $[-1, 1]$
- Sample $x \sim \mathcal{U}[-1, 1]$
- Sample $y \sim \mathcal{U}[-1, 1]$
- If $x^2 + y^2 \le 1$, accept the sample. Otherwise reject it and try again.

Rejection Sampling Rejection Sampling

• Express $P(E = e)$ as an expectation:

$$
P(E = e) = \sum_{x} \delta_e(x) P(x) = E_P[\delta_e(x)]
$$

where $\delta_e(x)$ is an indicator function which is 1 if x is consistent with the evidence $E = e$ and 0 otherwise.

- \bullet Generate samples
- Monte Carlo estimate $\hat{g}(x_1, \dots, x_{\mathcal{T}}) = \frac{1}{\mathcal{T}}$ $\sum_{t=1}^{T} g(x^t)$:

 $\hat{P}(E = e) = \frac{\text{Number of samples that have } E = e}{\text{Total number of samples}}$ Total number of samples

• Issues: If $P(E = e)$ is very small (e.g., 10^{-55}), nearly all samples will be rejected.

\n- Note: even if
$$
P(E = e)
$$
 is extremely small, $p(X = x \mid E = e) = p(X = x, E = e) / p(E = e)$ can be large.
\n

Failure Case

- Suppose you want to sample points uniformly within the circle
- You have access to a uniform random generator in $[-1, 1]$
- Sample $x \sim \mathcal{U}[-1, 1]$, sample $y \sim \mathcal{U}[-1, 1]$
- \bullet If (x, y) is in the circle, accept the sample. Otherwise reject it and try again.
- Can be extremely inefficient if the circle is small
- A conditional probability is like the ratio between the red vs. gray circle areas. Can we sample directly inside the gray circle?

Importance Sampling Importance Sampling

- Idea: evidence variables are fixed, so let's just sample over non-evidence ones
- **Idea: use a proposal distribution** over non-evidence variables $Q(Z = X \setminus E)$ that we can efficiently sample from and such that $P(Z = z, E = e) > 0 \Rightarrow Q(Z = z) > 0$. Express $P(E = e)$ as follows:

$$
P(E = e) = \sum_{z} P(Z = z, E = e)
$$

=
$$
\sum_{z} P(Z = z, E = e) \frac{Q(Z = z)}{Q(Z = z)}
$$

=
$$
E_{Q} \left[\frac{P(Z = z, E = e)}{Q(Z = z)} \right] = E_{Q}[w(z)]
$$

• Generate samples from Q and estimate $P(E = e)$ using the following Monte Carlo estimate:

$$
\hat{P}(E = e) = \frac{1}{T} \sum_{t=1}^{T} \frac{P(Z = z^t, E = e)}{Q(Z = z^t)} = \frac{1}{T} \sum_{t=1}^{T} w(z^t)
$$

where $(z^1, \ldots, z^{\mathcal{T}})$ are sampled from Q .

Ideal Proposal Distribution

- For optimum performance, the proposal distribution Q should be as close as possible to $P(Z|E = e)$.
	- When $Q = P(Z|E = e)$, the weight of every sample is $P(E = e)$!

$$
w(zt) = \frac{P(Z = zt, E = e)}{Q(Z = zt)} = \frac{P(Z = zt, E = e)}{P(Z = zt|E = e)}
$$

=
$$
\frac{P(Z = zt, E = e)P(E = e)}{P(Z = zt, E = e)}
$$

=
$$
P(E = e)
$$

- Weight does not depend on z^t
- One sample would be sufficient!

Issue of Importance Sampling

- (Un-normalized) IS is not suitable for estimating $P(X_i = x_i | E = e)$.
- One option: Estimate the numerator and denominator by IS.

$$
\hat{P}(X_i = x_i | E = e) = \frac{\hat{P}(X_i = x_i, E = e)}{\hat{P}(E = e)}
$$

- This ratio estimate can be inaccurate because errors in the numerator and denominator may be cumulative.
	- For example, if the numerator is an under-estimate and the denominator is an over-estimate.

Normalized Importance Sampling

- Partition the variables into evidence *E* and non-evidence *Z*
- Given an indicator function $\delta_{x_i}(z)$ (which is 1 if *z* is consistent with $X_i = x_i$ and 0 otherwise), we can write $P(X_i = x_i | E = e)$ as:

$$
P(X_i = x_i | E = e) = \frac{P(X_i = x_i, E = e)}{P(E = e)} = \frac{\sum_{z} \delta_{x_i}(z) P(Z = z, E = e)}{\sum_{z} P(Z = z, E = e)}
$$

Now we can use the same *Q* and same samples from it to estimate both the numerator and the denominator.

$$
\hat{P}(X_i = x_i | E = e) = \frac{\frac{1}{T} \sum_{t=1}^{T} \delta_{x_i}(z^t) w(z^t)}{\frac{1}{T} \sum_{t=1}^{T} w(z^t)}
$$

Agenda

- Probability Review
- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC
	- **Gibbs Sampling and Practical MCMC**
Limitations of IS

- Does not work well if the proposal $Q(x)$ is very different from $P(x)$
- Yet constructing a $Q(x)$ similar to $P(x)$ can be difficult
	- Making a good proposal usually requires knowledge of the analytic form of $P(x)$ – but if we had that, we wouldn't even need to sample!
- \bullet Intuition: instead of a fixed proposal $Q(x)$, what if we could use an adaptive proposal?

Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
	- Instead of $Q(x')$, they use $Q(x'|x)$ where x' is the new state being sampled, and x is the previous sample
	- As x changes, $Q(x'|x)$ can also change (as a function of x')

Metropolis-Hastings Algorithm

- Draws a sample x' from $Q(x'|x)$, where x is the previous sample
- ^l The new sample x' is **accepted** or **rejected** with some probability A(x'|x)
	- This acceptance probability is

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- $A(x'|x)$ is like a ratio of importance sampling weights
	- $P(x')/Q(x'|x)$ is the importance weight for x', $P(x)/Q(x|x')$ is the importance weight for x
	- We divide the importance weight for x' by that of x
	- Notice that we only need to compute $P(x')/P(x)$ rather than $P(x')$ or $P(x)$ separately
- $A(x'|x)$ ensures that, after sufficiently many draws, our samples will come from the true distribution $P(x)$

Metropolis-Hastings Algorithm

- 1. Initialize starting state $x^{(0)}$, set $t=0$
- 2. Burn-in: while samples have "not converged"
	- $x = x^{(t)}$, $t = t + 1$
	- sample $x^* \sim Q(x^*|x)$ // draw from proposal
	- sample $u \sim$ Uniform(0,1) // draw acceptance threshold

• If
$$
u < A(x^* | x) = min \left(1, \frac{P(x^*)Q(x | x^*)}{P(x)Q(x^* | x)} \right)
$$

- $\mathbf{x}^{(t)} = \mathbf{x}^*$ // transition
- **e** else
	- $x^{(t)} = x$ // stay in current state
- 3. Take samples from P(x): Reset t=0, for t=1:*N*
	- $x(t+1) \leftarrow$ Draw sample $(x(t))$
- 4. Monte Carlo Estimation using these N final samples

Function Draw sample (*x*(t))

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- **.** Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

• Example:

- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- **.** Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

- **.** Example:
	- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
	- We're trying to sample from a bimodal distribution $P(x)$

$$
A(x' | x) = \min\left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)}\right)
$$

• Example:

- Let $Q(x'|x)$ be a Gaussian centered on x (it is symmetric)
- We're trying to sample from a bimodal distribution $P(x)$

Agenda

- Probability Review
- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC

Theoretical Aspects of MCMC

- ^l The MH algorithm has a "burn-in"/"warm-up" period. We throw away all the samples we get from this period. Why?
- Why are the MH samples guaranteed to be from $P(x)$?
	- The proposal $Q(x'|x)$ keeps changing with the value of x; how do we know the samples will eventually come from $P(x)$?
- What are good, general-purpose, proposal distributions?

• A Markov Chain is a sequence of random variables $x^{(1)},x^{(2)},...,x^{(t)}$ with the Markov Property

$$
P(x^{(t)} = x | x^{(1)},..., x^{(t-1)}) = P(x^{(t)} = x | x^{(t-1)}) \qquad \mathbf{x}^{(0)} \qquad ... \qquad \mathbf{x}^{(t-1)} \qquad \mathbf{x}^{(t)}
$$

- $P(x^{(t)} = x | x^{(t-1)})$ is known as the <u>transition kernel</u> (just a matrix for discrete random variables)
- The whole process is completely determined by the transition kernel and the initial state. The next state depends only on the preceding state
- Note: the random variable $x^{(i)}$ can be vectors
	- \bullet We define $x^{(t)}$ to be the t-th sample of all variables in our model
- We study homogeneous Markov Chains, in which the transition kernel $P(x^{(t)} = x^{\prime} | x^{(t-1)} = x)$ is fixed with time
	- To emphasize this, we will call the kernel $T(x' | x)$, where x is the previous state and x' is the next state

Initialize the simulation in one state (or randomly) x(0) Randomly pick an outgoing edge (sample $x^{(1)}$ given $x^{(0)} = (1,1)$)

Markov Chain Concepts

- To understand MCs, we need to define a few concepts:
	- Probability distributions over states: $\pi^{(t)}(x)$ is a distribution over the state of the system x, at time t
		- When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
		- \bullet Here x represents all variables
	- Transitions: recall that states transition from $x^{(t)}$ to $x^{(t+1)}$ according to the transition kernel $T(x'|x)$. We can also transit the entire distribution:

 $\pi^{(t+1)}(x') = \sum_{x} \pi^{(t)}(x) T(x' | x)$

• At time t, state x has probability mass $\pi^{(t)}(x)$. The transition probability redistributes this mass to other states x'.

Initialize the simulation in one state x(0)

Initialize the simulation in one state x(0)

Initialize the simulation in one state x(0)

Stationary Distribution

• $\pi(x)$ is stationary if it does not change under the transition k ernel $T(x'|x)$

$$
\pi(x') = \sum_{x} \pi(x) T(x' | x) \text{ for all } x'
$$

- A MC is reversible if there exists a distribution $\pi(x)$ such that the detailed balance condition is satisfied: $\pi (x')T(x | x') = \pi (x)T(x' | x)$
	- This is saying under the distribution $\pi(x)$, the probability of x' \rightarrow x is the same as x→x'
- Theorem: $\pi(x)$ is a stationary distribution of the MC if it is reversible

Properties of Markov Chains

- Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability > 0 in a finite number of steps
	- i.e. there are no unreachable parts of the state space
	- This property only depends on the transition kernel, not the initial state
- Aperiodic: an MC is aperiodic if you can return to any state *i* at any time
	- **If there exists** *n* **such that for all** $n' \ge n$ **, Pr(x^(n') = i | x⁽⁰⁾ = i) > 0**
- Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

Examples

Reducible. Limiting distribution depends on initial condition

Irreducible, periodic (each state visited every 3 iterations) Limiting distribution does not exist

Irreducible, aperiodic. Unique limiting distribution P(x) = [0.6, 0.4]

Stationary Distribution

- Ergodicity implies you can reach the stationary distribution $\pi_{st}(x)$, no matter the initial distribution $\pi^{(0)}(x)$
	- All good MCMC algorithms must satisfy ergodicity, so that you can't initialize in a way that will never converge

Why Does MH Work?

- Recall that we draw a sample x' according to $Q(x'|x)$, and then accept/reject according to A(x'|x).
	- \bullet In other words, the transition kernel is

 $T(x'|x) = Q(x'|x) A(x'|x)$

We can prove MH is reversible, i.e. stationary distribution exists:

• Recall that

$$
A(x' | x) = min \left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)} \right)
$$

• Notice this implies the following:

if
$$
A(x'|x) < 1
$$
 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

Why Does MH Work?

 $A(x' | x) < 1$ then $\frac{1 - (x)g(x + x)}{g(x + x)} > 1$ $(x')Q(x | x')$ $\frac{(x)Q(x'|x)}{x}$ $\int Q(x | x^{\prime})$ ¢ $P(x')Q(x|x)$ if $A(x'|x) < 1$ then $\frac{P(x)Q(x'|x)}{P(x)} > 1$ and thus $A(x|x') = 1$

Now suppose $A(x'|x) < 1$ and $A(x|x') = 1$. We have

 $P(x)T(x' | x) = P(x')T(x | x')$ $P(x)Q(x' | x)A(x' | x) = P(x')Q(x | x')A(x | x')$ $P(x)Q(x' | x)A(x' | x) = P(x')Q(x | x')$ $(x)Q(x' | x)$ $(x' | x) = \frac{P(x')Q(x | x')}{P(x)Q(x' | x')}$ $P(x)Q(x' | x)$ $A(x'|x) = \frac{P(x')Q(x|x)}{P(x)Q(x)}$ ¢ $=\frac{P(x')Q(x|x')}{P(x)Q(x|x')}$

- ^l The last line is exactly the **detailed balance condition**
	- In other words, the MH algorithm leads to a stationary distribution $P(x)$
	- Recall we defined $P(x)$ to be the true distribution of x
	- If ergodic (irreducible & aperiodic), MH algorithm eventually converges to the true distribution

Why Does MH Work?

- ^l Theorem: If a Markov chain is **ergodic** and **reversible** with respect to $P(x)$, then $P(x)$ is its unique stationary distribution. The chain converges to the stationary distribution regardless of where it begins.
- The *mixing time*, or how long it takes to **reach** something close the stationary distribution, can't be guaranteed.

Agenda

- Probability Review
- Approximate Inference
	- Monte Carlo and Importance Sampling
	- Markov Chain Monte Carlo (MCMC)
		- Theoretical Aspects of MCMC
	- Gibbs Sampling and Practical MCMC

Gibbs Sampling

- Gibbs Sampling is a special case of the MH algorithm
- Gibbs Sampling samples each random variable one at a time. Therefore, it has reasonable computation and memory requirements

Gibbs Sampling Algorithm

- Suppose the model contains variables x_1, \ldots, x_n
- Initialize starting values for x_1, \ldots, x_n
- Do until convergence:
	- 1. Pick an ordering of the n variables (can be fixed or random)
	- 2. For each variable x_i in order:
		- 1. Sample $x \sim P(x_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$, i.e. the conditional distribution of x_i given the current values of all other variables
		- 2. Update $x_i \leftarrow x$
- When we update x_i , we immediately use its new value for sampling other variables x_i

Gibbs Sampling is MH

• The GS proposal distribution is

$$
Q(x'_{i}, \mathbf{x}_{-i} | x_{i}, \mathbf{x}_{-i}) = P(x'_{i} | \mathbf{x}_{-i})
$$

(**x**-i denotes all variables except xi)

• Applying Metropolis-Hastings with this proposal, we obtain:

$$
A(x'_{i}, \mathbf{x}_{-i} | x_{i}, \mathbf{x}_{-i}) = \min \left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} | x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} | x_{i}, \mathbf{x}_{-i})} \right)
$$

=
$$
\min \left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} | \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} | \mathbf{x}_{-i})} \right) = \min \left(1, \frac{P(x'_{i} | \mathbf{x}_{-i})P(\mathbf{x}_{-i})P(x_{i} | \mathbf{x}_{-i})}{P(x_{i} | \mathbf{x}_{-i})P(\mathbf{x}_{-i})P(x'_{i} | \mathbf{x}_{-i})} \right)
$$

=
$$
\min (1,1) = 1
$$

GS is simply MH with a proposal that is always accepted

Practical Aspects of MCMC

- \bullet How do we know if our proposal $Q(x'|x)$ is good or not?
	- Monitor the acceptance rate
	- Plot the autocorrelation function

Acceptance Rate

- Choosing the proposal $Q(x'|x)$ is a tradeoff:
	- "Narrow", low-variance proposals have high acceptance, but take many iterations to explore P(x) fully because the proposed x are too close
	- "Wide", high-variance proposals have the potential to explore much of P(x), but many proposals are rejected which slows down the sampler
- A good $Q(x'|x)$ proposes distant samples x' with a sufficiently high acceptance rate

Acceptance Rate

- Acceptance rate is the fraction of samples that MH accepts.
	- General guideline: proposals should have \sim 0.5 acceptance rate [1]
- Gaussian special case:
	- If both $P(x)$ and $Q(x'|x)$ are Gaussian, the optimal acceptance rate is ~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

[1] Muller, P. (1993). "A Generic Approach to Posterior Integration and Gibbs Sampling" [2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). "Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms"

Autocorrelation Function

- MCMC chains always show autocorrelation (AC)
	- AC means that adjacent samples in time are highly correlated
- We quantify AC with the autocorrelation function of an r.v. x:

$$
R_{x}(k) = \frac{\sum_{t=1}^{n-k} (x_{t} - \overline{x})(x_{t+k} - \overline{x})}{\sum_{t=1}^{n-k} (x_{t} - \overline{x})^{2}}
$$

- High autocorrelation leads to smaller effective sample size!
- We want proposals $Q(x'|x)$ with low autocorrelation

Practical Aspects of MCMC

- How do we know if our proposal $Q(x'|x)$ is any good?
	- Monitor the acceptance rate
	- Plot the autocorrelation function
- How do we know when to stop burn-in?
	- Plot the sample values vs time
Sample Values vs Time

- Monitor convergence by plotting samples (of r.v.s) from multiple MH runs (chains)
	- If the chains are well-mixed (left), they are probably converged
	- If the chains are poorly-mixed (right), we should continue burn-in
- In practice, we usually start with multiple chains

Summary

- Markov Chain Monte Carlo methods use adaptive proposals $Q(x'|x)$ to sample from the true distribution $P(x)$
- Metropolis-Hastings allows you to specify any proposal $Q(x'|x)$
	- \bullet But choosing a good $Q(x'|x)$ is not easy
- Gibbs sampling sets the proposal $Q(x'|x)$ to the conditional distribution $P(x'|x)$
	- Acceptance rate is always 1!
	- But remember that high acceptance usually entails slow exploration
	- In fact, there are better MCMC algorithms for certain models
- ^l Knowing when to halt burn-in is an art

Thank you! Q & A