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Abstract 
 

Intensive care units (ICU) are critical for treating severe health conditions but represent significant hospital 

expenditures. Accurate prediction of ICU length of stay (LoS) can enhance hospital resource management, 

reduce readmissions, and improve patient care. In recent years, widespread adoption of electronic health 

records (EHR) and advancements in artificial intelligence (AI) have facilitated accurate prediction of ICU 

LoS. However, there is a notable gap in the literature on explainable AI methods which identify and include 

interactions between model input features in developing accurate predictions of health outcomes. This gap 

is especially noteworthy as the medical literature suggests that complex interactions between clinical 

features are likely to significantly impact patient health outcomes. We propose a novel graph learning-based 

approach that offers state-of-the-art prediction and greater interpretability for ICU LoS prediction. 

Specifically, our explainable AI (XAI) graph model can generate interaction-based explanations, supported 

by evidence-based medicine, which provide rich patient-level insights compared to existing XAI methods. 

We test the statistical significance of our XAI approach using a distance-based separation index and utilize 

perturbation analyses to examine the sensitivity of our model explanations to changes in input features. 

Finally, we validate the explanations of our graph learning model using the Co-12 framework and a small-

scale user study of ICU clinicians. Our approach offers interpretable predictions of ICU LoS grounded in 

design science research which can facilitate greater integration of AI-enabled decision support systems in 

clinical workflows, thereby enabling clinicians to derive greater value. 

 

Key words: Length of stay, intensive care units, prediction, machine learning, deep learning, graph learning, 
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1. Introduction 

ICUs provide life-saving capabilities to patients hospitalized for severe diseases, comorbidities, and other 

life-threatening conditions. However, ICUs also consume significant resources in their utilization of clinical 

staff and equipment. Prior studies have shown that as much as a third of hospital budgets are spent on ICUs, 

and a third of inpatient costs can be attributed to ICU stays (Multz et al. 1998, Shweta et al. 2013). Hence, 

it is in the best interest of hospitals, taxpayers, and insurers to reduce ICU costs while ensuring delivery of 

high-quality patient care. Since hospitals use LoS to measure the effectiveness of treatments, schedule 

resources and make staffing decisions, accurate LoS prediction for ICU patients should lead to better ways 

of managing scarce ICU resources (Romano et al. 2014). Furthermore, since LoS serves as an early 

indicator of future hospital readmissions, effective LoS prediction can allow healthcare practitioners to 

manage ICU resources better by reducing readmission rates (Singh and Terwiesch 2012, Oh et al. 2018).  

With widespread adoption and use of EHR systems in recent years, researchers can use AI to 

analyze clinical and administrative claims data in developing more accurate predictions of patient health 

outcomes. However, extant research has often prioritized predictive performance over actionable and 

interpretable insights, a gap that undermines the practical utility of predictive models for clinical decision-

making (Chen et al. 2023). Computer scientists and healthcare professionals have advocated for integrating 

intrinsic explanations within predictive models in healthcare settings, especially to promote greater 

utilization of AI-based, clinical decision support tools (Rudin 2019, Petch et al. 2022). AI systems with 

intrinsic explanation capabilities are designed to inherently explain the prediction process. Unlike post-hoc 

explanation methods, which generate explanations by approximating the inner working of black-box AI 

models, intrinsic explanations accurately reflect the prediction process with no approximation (Molnar 

2022). In healthcare, this enhanced transparency is critical to increase physician trust in the prediction and 

underlying logic of AI-based clinical decision support tools. 

Furthermore, recent research suggests that simple feature-based explanations are inadequate to 

explain the complex relationships that AI-based models utilize to generate accurate predictions (Fernández-
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Loría et al. 2022, Carmichael and Scheirer 2023; Jiang et al. 2023). Evidence-based medicine also 

emphasizes the importance of recognizing the complex interactions among clinical factors in understanding 

patient health outcomes (Singbartl and Kellum 2012, Jankovic et al. 2018). Hence, it is important to provide 

explanations that accurately identify key interactions among features to better represent the underlying 

prediction process and align with clinical domain knowledge (Ahmad et al. 2018).  

Yet, there remains a significant gap in the development and application of intrinsically 

interpretable models which effectively identify key feature interactions, particularly in healthcare settings. 

To address such a gap, we develop a novel graph learning-based prediction model to intrinsically identify 

complex interactions between patient attributes and their impact on LoS prediction. Our model constructs 

patient-level relational graphs that serve as instruments to predict ICU LoS with high accuracy and interpret 

the contribution of salient features and feature interactions toward LoS prediction. We compare our graph 

learning model against alternative state-of-the-art, interaction-based XAI methods. Such methods either 

provide interaction-based explanations of complex prediction methods in a post-hoc manner or construct 

intrinsically explainable models that offer interaction-based explanations. Our results indicate that prior 

XAI methods fail to generate meaningful explanations based on feature interactions and are 

computationally less efficient. In comparison, our model not only identifies the importance of feature 

interactions but does so more efficiently than existing XAI methods, demonstrating its superiority in 

providing more transparent explanations, while offering comparable predictive accuracy. 

We further validate our interaction-based explanations through multiple tests to evaluate our model 

properties based on the Co-12 framework, which defines  a set of conceptual properties for evaluation of 

XAI methods (Nauta et al. 2023). Utilizing perturbation analysis, we demonstrate that modifications to 

input features result in appropriate changes in model explanation based on the importance of the perturbed 

features. We deploy a distance-based separation index to test the significance of feature interactions 

identified by our model and confirm their relevance for ICU LoS prediction. Finally, we validate the 

coherence of explanations generated by our model by ensuring that salient feature interactions identified 

by our model are medically relevant and corroborated by prior medical research. We conduct a small-scale 
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user study with ICU physicians on the insights generated by our XAI approach, and their feedback further 

supports the practical usability and explanations generated by our model (Abbasi et al. 2024). 

Hence, we develop a novel graph-learning, intrinsically explainable prediction model to predict 

ICU LoS. Our intrinsic approach provides richer patient-level insights compared to existing XAI methods, 

by generating medically-relevant explanations of interactions between patient attributes. Hence, from a 

methodological and application perspective, our approach represents a significant contribution in terms of 

its ability to identify and generate patient-specific explanations of salient features and interactions that 

contribute to LoS prediction and are validated by our user study of ICU physicians. Although designed for 

ICU LoS prediction, our framework is generalizable to other types of health risk prediction, thereby 

enabling clinicians to make better-informed decisions using AI-enabled clinical decision support tools 

(Petch et al. 2022). Our approach provides pathways that illustrate our contributions to design science 

research based on specific traits, such as the richness of domain adaptation and use of a sociotechnical lens, 

to develop and validate a novel explainable AI prediction approach (Abbasi et al. 2024). 

2. Background 

In this section, we review the extant research on applications of machine learning (ML) and deep learning 

(DL) techniques for prediction of health outcomes, with a focus on LoS. Subsequently, we discuss 

advancements in graph learning algorithms—a subset of deep learning that processes data with graph 

structures—and their use in healthcare. We also identify and discuss significant gaps and limitations in the 

current XAI literature and describe how our proposed graph learning model addresses these challenges. 

2.1. LoS Prediction  

Length of stay in the ICU is one of the most important measures of patient health, a proxy for resource 

allocation decisions, and an indicator of future readmissions. Hence, accurate prediction of LoS is critical 

for effective ICU management and care delivery, especially among high-risk patients with severe 

complications (Singh and Terwiesch 2012, Romano et al. 2014, Oh et al. 2018). Severity score-based 
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measures, such as Acute Physiology and Chronic Health Evaluation IV (APACHE IV), have been deployed 

in ICUs to predict patient outcomes such as mortality and LoS (Zimmerman et al. 2006). These scores were 

derived from regression models using patient characteristics and vital signs as independent variables. 

However, the efficacy of risk-score-based systems, such as APACHE IV, has come under greater scrutiny 

due to their limited selection of independent variables and over-reliance on the underlying statistical 

assumptions of logistic regression models (Zangmo and Khwannimit 2023). 

In recent years, medical researchers have deployed ensemble-based ML techniques, such as random 

forests and gradient boosting, to predict LoS in ICU settings. These methodologies have been applied to 

diverse patient populations, ranging from general ICU patients to those with specific conditions such as 

lung cancer and COVID-19 (Alsinglawi et al. 2022, Saadatmand et al. 2023). Information systems 

researchers have also utilized these techniques to study preventable readmissions among patients with 

chronic conditions (Ben-Assuli and Padman 2020). While ensemble methods outperform statistical 

approaches, they are unable to exploit latent relationships, such as temporal dependencies, in clinical data.  

In contrast, recent computational advancements have enabled development of increasingly 

sophisticated DL models that utilize latent relationships within healthcare datasets (Morid et al. 2023). For 

instance, researchers have studied the application of Temporal Pointwise Convolutional Neural Networks 

to predict ICU LoS (Rocheteau et al. 2021, Al-Dailami et al. 2022b). These models represent distinct 

variations of temporal convolutional neural networks (T-CNNs) that were developed to analyze time-

varying data. Alternatively, attention mechanisms have also been utilized to improve LoS prediction. These 

mechanisms allow neural networks to focus on relevant input data segments and have established healthcare 

applications, such as the Reverse Time Attention (RETAIN) model (Choi et al. 2016). Recent innovations 

in this stream of literature have applied variants of attention mechanisms specifically designed to handle 

complex healthcare data. These innovations include additional designs to process multi-modal and time 

series data. Examples include the Attention-Based Memory Fusion Network and Temporal-Spatial 

Correlation Attention Network (Al-Dailami et al. 2022a, Nie et al. 2023).  
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2.2. Graph Learning 

Graph learning, or deep graph learning, has emerged as a powerful approach to analyze and model data 

with complex interactions between entities. Traditional deep learning techniques, such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), excel at handling structured data, such as 

images and numeric or text sequences, but struggle with complex, unstructured interactions. Graphs 

naturally depict these interactions through nodes and edges, making them suitable to represent a variety of 

real-world phenomena, including social networks, molecular structures, and transportation systems (Wu et 

al. 2020). In turn, graph learning methods, also known as graph neural networks (GNNs), offer a general 

framework for learning representations of graph data. These models aggregate and process information 

from the neighbors of nodes in graphs and capture complex interaction patterns within the data. 

Prior studies have explored applications of graph learning methods in healthcare, particularly for 

ICU risk prediction and chronic disease management. For example, Ma et al. (2023) constructed a patient 

graph to predict mortality risk in ICU patients, where the graph edges are weighted by patient similarity. 

The patient graph was used to identify missing patient features, and a dynamic attention mechanism was 

used to learn additional structural features for each patient. Carvalho et al. (2023) predicted 30-day ICU 

readmission risk by enriching electronic health record (EHR) data with a knowledge graph (KG) and used 

KG embeddings to integrate ontology information. Similarly, Sun et al. (2024) addressed EHR data 

heterogeneity by using multi-view graphs to encode diagnosis and medication co-occurrence and analyzed 

their impact on ICU outcomes. Tong et al. (2021) proposed an ICU LoS prediction model that combines 

Long Short-Term Memory (LSTMs) networks to extract temporal features and GNNs for exploiting 

similarity in patient diagnoses.  

2.3. Explainable AI 

Despite a rapid increase in deployment of AI applications in healthcare, the “black box” nature of ensemble 

and DL models poses a barrier to clinical use and integration, as they lack transparency in decision-making. 

Without being able to interpret the recommendations proposed by AI models, the adoption of AI in clinical 
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practice has sparked criticism and raised questions about numerous legal, ethical, equity, and medical 

concerns (Rai 2020, Bauer et al. 2023, Bauer and Gill 2024).  Due to these challenges, there has been greater 

emphasis in recent years on the role of XAI methods in enhancing the transparency and acceptance of AI 

models in healthcare. The field of XAI seeks to develop methods that explain AI-based models to enhance 

model interpretability, fairness, and transparency. Such explainability allows for better human 

understanding of AI decision-making and fosters greater trust in model outputs (Chaddad et al. 2023).  

Previous studies have classified XAI methods based on various attributes (Chaddad et al. 2023). 

Table 1 compares various XAI methods based on two defining characteristics: type of explanation—

intrinsic or post-hoc, and attribute type—feature-based or interaction-based. In Appendix A, we provide a 

comprehensive comparison of the XAI methods discussed. Extant research on XAI methods has mainly 

focused on developing and using post-hoc, feature-based explanations to explain deep learning models. 

Prominent examples include Gradient-weighted Class Activation Mapping (Grad-CAM), Layer-wise 

Relevance Propagation (LRP), and Integrated Gradient (IG) (Bach et al. 2015, Sundararajan et al. 2017, 

Selvaraju et al. 2020). These methods determine the importance of input features by examining the gradient 

associated with each input. Applications in healthcare include identification of critical regions for medical 

imaging, such as chest CT scans for COVID-19 detection (Zhang et al. 2021), developing explainable early 

warning scores for conditions such as sepsis (Lauritsen et al. 2020), and evaluating the significance of 

various input features in predicting ICU LoS (Rocheteau et al. 2021).  

Outside the scope of deep learning models, post-hoc, feature-based XAI techniques are more model 

agnostic, offering interpretability irrespective of their underlying model architecture. Perturbation-based 

methods, which modify specific features to evaluate their impact on model output, have been particularly 

useful to identify vulnerabilities in prediction models (Finlayson et al. 2019). Model distillation techniques, 

such as Local Interpretable Model-agnostic Explanations (LIME), create localized linear models to interpret 

more complex models and have been used to explain predictions of heart failure incidents during 

hospitalization (Khedkar et al. 2020). Building on LIME, the robust local explanations (ROLEX) method 

was developed to provide locally faithful explanations and used to explain predictions of fragility-related 
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fractures in patients (Kim et al. 2023). Shapley Additive Explanations (SHAP) utilize Shapley values to 

assign importance to individual features. SHAP has been particularly useful in explaining and predicting 

hospital LoS for lung cancer patients (Alsinglawi et al. 2022). 

Beyond feature-based explanations, there is an emerging body of research aimed at developing 

techniques that provide explanations based on interactions between features. A prominent stream of work 

involves extending SHAP values to account for feature interactions, such as the Shapley Interaction Index 

(SII), Shapley Taylor Index (STI), and Faith Shapley Index (FSI) (Grabisch and Roubens 1999, 

Sundararajan et al. 2020, Tsai et al. 2023). These methods extend the SHAP framework to include subsets 

of features, thereby calculating the importance of feature interactions. Another significant stream of 

research in building post-hoc, interaction-based XAI methods for DL models involves extending gradient-

based explanation methods to calculate the gradient of feature interactions. A notable example is Integrated 

Hessian (IH), an extension of IG, which utilizes the gradient of IG values to identify the importance of 

interactions between pairs of features. The effectiveness of IH has been studied in the context of identifying 

drug-drug interactions for treatment of leukemia (Janizek et al. 2021). 

Last, a related stream of literature focuses on developing intrinsic, interaction-based XAI methods 

by expanding Generalized Additive Models (GAMs) to include pairwise interaction terms. Initial work in 

this area started with GA2M, later evolving to explainable boosting machines (EBM), which constructs 

GAMs using ensemble decision trees, and more recently NODE-GAM, which employs deep neural 

networks to build GAMs (Lou et al. 2013, Nori et al. 2019, Chang et al. 2021). These methods excel at 

generating intrinsically explainable models but are limited by the additive nature of the GAM framework. 

Our graph learning model (lower right quadrant of Table 1) provides a novel approach to generate intrinsic 

explanations that emphasize both features and feature interactions and their contributions to explainability. 

2.4. Research Gaps 

Computer scientists and medical professionals have increasingly advocated for using inherently 

interpretable models in healthcare, highlighting significant concerns with the limitations of post-hoc 
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explanation methods. Yet, most applications of XAI in healthcare focus on utilizing feature-based, post-

hoc XAI methods, such as SHAP and CAM (Chaddad et al. 2023). Such post-hoc methods primarily rely 

on approximations and often fail to accurately represent the nuances of black box models. Information lost 

in this approximation process can potentially erode users’ trust in the prediction model or lead to 

misinterpretation of predictions (Rudin 2019, Petch et al. 2022). Petch et al. (2022, p. 211) articulated the 

challenges associated with post-hoc explanations and argued for inherently interpretable prediction models:  

“…. The most notable limitation of explainability techniques is that most of them are 
approximations of black-box models and therefore do not precisely account for the inner workings 
of those models […]. A key advantage of many ML methodologies is that they can model nonlinear 
relationships, but the strategy of explaining black-box models through approximations may be 
particularly limiting […]. Even with nonlinear explainability techniques such as decision trees, the 
relative simplicity of explanations compared with the black-box models means that any nonlinear 
relationships surfaced through the explanation are likely to be oversimplifications and thus should 
be interpreted with caution […]. If there is no meaningful difference in accuracy between an 
interpretable model and a black box, an interpretable method should be used ….” 

This perspective highlights the critical importance of deploying intrinsically interpretable models in 

healthcare. Such models ensure that physicians can rely on the accuracy of the explanations provided, 

avoiding error-prone decisions based on prior beliefs and superficial information (Jussupow et al. 2021).  

Similarly, we argue that feature-based explanations alone are insufficient to understand the complex 

relationships that AI models exploit to generate predictions. Instead, it is important to offer explanations 

that highlight key interactions between features, especially in real-world healthcare settings.  

Extant research has shown that feature-based XAI methods fail to accurately explain complex AI-

based models, often providing misleading or incorrect explanations (Fernández-Loría et al. 2022, 

Carmichael and Scheirer 2023; Jiang et al. 2023). Providing misleading or incorrect interpretations can 

significantly impair the effectiveness of AI-based tools. Modern evidence-based medical research suggests 

that understanding patient health outcomes requires recognizing the complex interactions of multiple 

factors. In ICUs, for example, acute kidney injuries—which affect up to 25% of ICU patients—occur due 

to complex interactions of clinical conditions instead of individual factors (Singbartl and Kellum 2012). 

Similarly, drug-drug interactions in ICUs may have unexpected synergistic or antagonistic effects, further 
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complicating patient outcomes (Jankovic et al. 2018). Therefore, it is critical to offer explanations that 

account for interactions among input features. We posit that such explanations may not only represent the 

prediction process more accurately but are also aligned with domain knowledge, making them accessible 

to practitioners who often lack a background in machine learning (Ahmad et al. 2018). 

Despite the importance of intrinsic, interaction-based explanations, a significant gap persists in the 

development and application of AI models with these capabilities. We address this gap by developing a 

graph learning-based XAI approach that provides intrinsic, interaction-based explanations to predict 

patient health outcomes, using ICU LoS as our research domain. By focusing on the design artifact of 

feature interactions and their impact on LoS prediction and explainability, we ground our XAI approach in 

the principles of design science research based on rich domain knowledge (provided by ICU physicians in 

our user study) and highlight the importance of nuanced interactions among patient attributes that contribute 

toward greater interpretability of our graph-based predictive model (Abbasi et al. 2024, Liao et al. 2020).  

2.5. Research Contributions 

Our graph learning model constructs patient-specific, relational graphs that not only serve as predictive 

instruments of ICU LoS but also explain the relationships between patient attributes that contribute to the 

predicted outcome. In comparison,  prior studies on ICU LoS prediction primarily seek to improve 

prediction capabilities without explaining these models. Furthermore, prior studies that attempt to offer 

explanatory insights into their prediction models utilize post-hoc, feature-based XAI methods that exhibit 

major limitations as discussed in the previous section (Rocheteau et al. 2021, Al-Dailami et al. 2022a).  

Our model is different from existing graph learning models as it aims to address the task of 

constructing patient-level graphs to provide intrinsic, interaction-based explanations. Unlike previous graph 

learning applications in healthcare which analyze cohort-level graphs to predict patient outcomes, our 

approach utilizes patient-level graphs, thereby enhancing both the accuracy and explainability of 

predictions (Tong et al. 2021, Carvalho et al. 2023, Ma et al. 2023). Furthermore, our approach 

autonomously constructs graph structures from data without a predefined graph format, identifying key 
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interactions or edges, that are unobserved in the initial data. This approach is superior to prior graph learning 

models which rely on pre-defined graph structures or are limited to exploring only a subset of potential 

unobserved interactions (Kreuzer et al. 2021, Zhu et al. 2021).  

We also introduce an innovative, attention-based method to assess the importance of both nodes 

and edges for graph-level prediction tasks. Existing methods, such as Graph Attention Networks (GAT), 

primarily focus on studying edge importance at the node or edge level (Veličković et al. 2018). In contrast, 

our model evaluates the hierarchical significance of both nodes and edges, providing a deeper and more 

nuanced understanding of the final prediction at the graph level. Our comprehensive approach to assess 

node and edge importance, combined with an ability to generate and analyze unique graphs for individual 

patients, facilitates the development of intrinsically interpretable and accurate predictive models. 

Compared to existing XAI methods, our proposed graph learning model offers the distinct 

advantage of providing intrinsic, interaction-based explanations. By representing each patient as a 

relational graph, where nodes correspond to clinical features and edges denote their interactions, our model 

can accurately identify nuanced interactions between features that contribute to the predicted outcome. In 

contrast, existing post-hoc interaction-based explanation methods rely on approximation of the internal 

mechanism of complex black-box models. While these techniques can offer some insights, they are limited 

in their ability to faithfully represent the intricate feature interactions within the prediction model.  

Although recent advances in intrinsically interpretable models provide interaction-level 

explanations, the family of GA2M models, which include EBM and NODE-GAM, prioritize an optimal 

GAM based on features alone, before identifying and ranking potential feature interactions within the 

residuals. Their design treats interactions as less important than individual features and limits the magnitude 

of their contribution to the final prediction. We empirically demonstrate that our graph learning model 

provides explanations that are computationally more efficient compared to post-hoc, interaction-based XAI 

methods and offers more insightful interaction-based explanations. From an application and methodological 

perspective, the enhancement in computational efficiency and explanatory power establishes our model as 

a superior approach in understanding the key features and interactions that influence ICU LoS. 



 
 

12 

Our graph learning-based XAI approach is distinct from extant studies that apply XAI methods to 

graph learning models. While XAI techniques have been developed and applied to graph learning models, 

these applications focus on post-hoc interpretations that illuminate the internal mechanism of black-box 

graph learning models (Ying et al. 2019, Zhang et al. 2022). These methods identify critical nodes and 

edges within predefined graph structures based on pre-trained graph learning models. In contrast, we build 

an intrinsically explainable model which constructs graphs from data that do not have a graph-structure 

format. Our approach then uses the constructed graph to predict and explain predictions of patient LoS, 

integrating graph construction directly into the prediction and explanation process. 

Hence, we develop a novel graph learning-based model to generate explainable predictions that 

highlight important interactions between input features that are not easily observable in the underlying data. 

Our model is unique in its ability to provide intrinsic and interaction-based explanations. We address the 

challenge of generating intrinsic, interaction-based explanations by transforming it into a graph-based task. 

Specifically, the objective is to construct graphs from data that initially lack graph structure and identify 

the significance of features and their interactions utilizing the structure of the constructed graph. To 

accomplish this, we extend graph learning techniques that were not originally designed for this purpose. 

Table 2 summarizes the salient differences between our approach and related XAI methods.  

3. Explainable AI Framework 

In this section, we first describe the specific task of predicting patient ICU LoS, research data utilized in 

this study, followed by the design and evaluation of our model using a design science framework.  

3.1. Prediction Task 

Previous studies have primarily focused on predicting the numeric value of ICU LoS by calculating the 

exact duration between patient admission and discharge from the ICU. However, current state-of-the-art 

models have revealed limitations with this approach, as prediction errors are measured in days, rendering 

them less useful in real-life clinical settings (Al-Dailami et al. 2022b, Sun et al. 2024). This drawback has 
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prompted a shift toward more accurate and interpretable LoS prediction methodologies. For example, 

Harutyunyan et al. (2019) transformed the task of predicting the numeric value of LoS into a multi-label 

classification problem and predicted the specific day of discharge for a patient after admission, with each 

label corresponding to a different discharge date. Alsinglawi et al. (2022) and Saadatmand et al. (2023) 

utilized binary predictions based on whether a patient is likely to be discharged from the ICU within a 

specific time window, such as within seven days of admission. Hence, the design of our prediction model 

needs to take into consideration the salient artifacts of the contextual setting such as the prediction window, 

interplay between features, and other attributes. 

In this study, we embrace prior research and adopt a binary prediction strategy based on the 

likelihood of patient discharge within seven days following ICU admission. Identifying patients with 

predicted ICU stay exceeding one week enables early intervention of specialized care management teams, 

enhancing the quality of care, especially for at-risk patients (Dahl et al. 2012). We also conduct robustness 

tests using alternate prediction tasks, specifically the binary prediction of ICU discharge within 3 days as 

well as numeric prediction of ICU LoS, as discussed in Appendix C.  

3.2. Research Data and Domain 

We utilize data collected from MIMIC III, a publicly accessible database provided by the MIT Lab for 

Computational Physiology, to assess the prediction and explanation capability of our proposed model. 

MIMIC III encompasses de-identified health records from 61,532 ICU admissions, compiled between 2001 

and 2012 at a large academic medical center in Boston (Johnson et al. 2016). Since the MIMIC III data 

spans twelve years, some patients have multiple records from recurrent ICU admissions from one or more 

hospital visits. We only consider the first ICU stay of each patient as a qualifying stay and eliminate 

successive ICU visits (if applicable) to limit our research scope to LoS prediction based on clinical data 

from their first ICU visit. This preempts the potential for serial correlation across multiple visits, since LoS 

on a later visit may depend on treatments performed during a prior ICU visit.  

We further refine our dataset by excluding ICU admissions with LoS less than two days—the data 
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collection period—to ensure that comprehensive and relevant data is used for model training. Selecting the 

data collection period is critical since an excessive duration can hamper model operability, while a shorter 

period might not offer sufficient data for training, culminating in suboptimal prediction. Our choice of a 

48-hour window is consistent with prior research and addresses the relative scarcity of clinical data for 

selected input variables within the first 24 hours of ICU admission (Rotar et al. 2022). Our final data set 

contains 22,243 ICU stays which provide the relevant data for our predictive models. Since our data has a 

one-to-one correspondence between patients and ICU stays, we refer to them interchangeably in the 

following discussion. For reference, we do not remove patients who passed away during their ICU stay.  

3.3 Graph Learning-Based Model  

Next, we propose and design a novel graph learning model to generate intrinsically explainable predictions 

of ICU LoS, capable of highlighting key interactions between features. This model predicts ICU LoS by 

constructing patient-level graphs that illustrate the importance of individual features and interactions 

between features at the patient level. Figure 1 provides a visual representation of our design approach. 

First, during node attribute generation (step 1), each type of input feature is transformed into a 

fixed-length vector within a unified feature space utilizing different projection layers, each corresponding 

to a specific type of input feature. These projection layers are customized based on defining characteristics 

of the associated type of input features—LSTM units for processing temporal data and feed-forward neural 

layers for the remaining types of features. Let x be the input for a given patient. In step 1, x is transformed 

into h, a combination of transformed feature representations htemporal and hstatic, as defined in equation (1).  

ℎ = [ℎ!"#$%&'( 	, ℎ)!'!*+]                                                                    (1) 

Specifically, projections for temporal data are generated through LSTMs as shown in equation (2),  

ℎ!"#$%&'( = 𝐿𝑆𝑇𝑀(𝑥!"#$%&'()                                                             (2) 

and a feed-forward layer for other feature types as shown in equation (3). 

ℎ)!'!*+ = 𝐿𝑆𝑇𝑀(𝑊)!'!*+𝑥)!'!*+ + 𝑏)!'!*+)                                                   (3) 

where Wstatic and bstatic are the weights and biases of the feed-forward layers. 
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Step 2 involves graph construction, where a fully connected directed graph, G=(V, E), is 

constructed based on the projected input features h. In this graph, each node i in V corresponds to a specific 

type of input feature with the associated projection hi encapsulated as the node attribute. Each edge eji = (j, 

i) in E represents the potential flow of information, or interaction, from node j to node i.  

In step 3, we calculate edge importance where we leverage a GAT to refine the node attributes in 

the constructed graph G. GAT is a specialized type of message-passing GNN that utilizes attention 

mechanisms to selectively focus on and aggregate relevant node-level information (Veličković et al. 2018). 

Specifically, the attributes of each node are updated with the weighted sum of attributes of its neighboring 

nodes. These weights are dynamically determined by an edge-level attention mechanism, which assesses 

the relevance of each neighbor in relation to the attribute vector of the focal node. For each node i in G, its 

updated attribute h'i is computed as shown in equation (4), 

ℎ′* = 𝜎(∑ 𝛼,*𝑊ℎ,,∈. )                                                             (4) 

where W is a learnable weight matrix, and αij are attention coefficients computed as shown in equation (5), 

𝛼,* =
/01	(4"'567"48('![:;"||:;#]))

∑ /01	(4"'567"48(('![:;"||:;$]))$∈&
                                                  (5) 

with a being a learnable weight vector of the attention mechanism. The calculated edge-level attention 

coefficients, αji’s, describe the relevance of edge eji for updating the attributes of node i. Given the fully 

connected nature of the patient-level graph constructed in step 2, α’s are calculated for all possible 

combinations of 𝑖, 𝑗 ∈ 𝑉, enabling the model to comprehensively assess all potential interactions. 

Next, in step 4, the node importance calculation, an attention-based read-out mechanism is utilized 

to generate a vector representation, hg, of the entire graph. This process involves creating a weighted sum 

of the updated node attributes h' shown in equation (6), where βi’s are attention weights computed similarly 

to the α’s by evaluating the relevance of each node’s transformed attributes h'i for the prediction task. 

ℎ@ = ∑ 𝛽*ℎ′**∈.                                                                       (6) 

The β’s assigned to each node not only determine hg but also serve as indicators for the importance of the 

updated node attributes.  
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Finally, in the graph-based prediction step (step 5a), the graph-level representation hg obtained 

from the attention-based read-out in step 4 is processed using a multi-layer perceptron, consisting of 

multiple feed-forward layers, to generate the final prediction for ICU LoS, as shown in equation (7).  

𝑌 = 𝑀𝐿𝑃(ℎ@)                                                                        (7)  

Simultaneously, in the graph-based explanation step (step 5b), we construct a patient-level directed 

graph utilizing the attention values from steps 3 and 4. This graph encapsulates the importance of individual 

types of features and their interactions in contributing to the ICU LoS prediction for each patient. 

Specifically, we define the importance of the node i,	𝐹𝑒𝑎𝑡𝐼𝑚𝑝* ,	as the corresponding node-level attention 

value, βi, which represents the importance of the feature type represented by node i, shown in equation (8) 

𝐹𝑒𝑎𝑡𝐼𝑚𝑝* = 𝛽*                                                                    (8) 

We then define the importance of the edge eji,	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝,,*, as the product of the attention value 

attributed to the edge, αji, with the attention value assigned to the destination node, βi. Its value is equal to 

the proportion of importance assigned to node i (in step 4) attributed to the flow of information from the 

feature represented by node j to the feature represented by node i.1 We interpret this value as the importance 

of the interaction between the features represented by node i and node j, as shown in equation (9). 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝,,* =	𝛼,*𝛽*                                                            (9) 

The product term in equation (9) is particularly important in representing the true importance of a 

given edge or feature interaction to the overall prediction process. While the attention values generated by 

the GAT represent the relative importance of an edge for information flow to a particular node, such values 

are assigned at the node level and do not measure the global relevance of that edge for graph-level prediction 

tasks. By multiplying the edge-specific attention with node-specific attention, we derive a measure of the 

overall importance of the edge (or interaction). Based on effective integration of the GAT with an attention-

 
1 It should be noted that the constructed graph is directional in nature, 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑖,𝑗 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑗,𝑖 
represent different values.	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑖,𝑗 represent the importance of the information flow from node i to node 
j, while 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑗,𝑖 represent the importance of the information flow from node j to node i.  



 
 

17 

based read-out mechanism, our model can identify the contributions of the interactions between features to 

the attention allocated to each feature. The sum of both feature- and edge-level importance scores is equal 

to one, as shown in equation (10). 

∑ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑝,,* =,,* ∑ 𝛼,*𝛽*,,* =	∑ 𝐹𝑒𝑎𝑡𝐼𝑚𝑝* =* ∑ 𝛽* = 1*                         (10) 

3.4. Model Adaptation 

Based on the model design in section 3.3, we discuss our model adaptation in the context of LoS prediction 

using the MIMIC III data. While we apply the model in the context of ICU LoS, our model design can be 

adapted to other health risk prediction tasks by simply modifying the process of transforming input features 

into a unified vector space. 

For each patient, we utilize 47 types of features across four categories: patient administrative data, 

diagnosis, medication data, and vital signs. Table 3 provides descriptive statistics of selected input features. 

Specifically, we utilize 7 types of patient administrative data: patient age, gender, ethnicity, marital status, 

type of hospital admission, insurance status, and ICU admission type, which together form a 1x71 vector. 

Patient diagnosis is represented as a 1x18 vector, indicating the presence or absence of disease diagnoses 

based on 18 top-level ICD-9 categories. We include 8 types of vital sign measures: heart rate, glucose level, 

body temperature level, oxygen level, respiration rate, systolic blood pressure, diastolic blood pressure, and 

mean blood pressure. Each type of vital sign is represented as a 1x24 vector, based on the average readings 

of the corresponding vital signs, organized in 24 two-hour intervals during the initial two days of ICU 

admission. Intervals with no readings are filled with a value of -1.2 Medications administered to patients 

are represented using seven principal components derived from daily dosage data across the two-day data 

collection period, for a total of 14 distinct values.  

The original daily dosage data spans 178 medication categories classified under level 3 of the 

Anatomical Therapeutic Chemical (ATC) system. These data are factorized into seven principal 

 
2 Alternative filling approaches, such as backward/forward filling, mean filling, or 0 filling, were examined and did 
not significantly influence the results.  
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components using principal component analysis (PCA). We categorize and label the seven principal 

components based on their corresponding loading values, as (a) Metabolic and Anti-infective Agents, (b) 

Cardiovascular and Blood Agents, (c) Gastrointestinal and Hormonal Agents, (d) Nutritional and Anti-

inflammatory Agents, (e) Antineoplastic and Immunomodulating Agents, (f) Dermatological and 

Respiratory Agents, and (g) Analgesics and Central Nervous System Agents. Appendix G provides a 

detailed description of our classification approach. Utilizing principal components, instead of raw 

medication dosage data, as inputs, helps to reduce noise and ensures consistent node count in the patient-

level graphs, thereby standardizing input features across patients. 

In the next step, 47 projection layers map each of the feature types into the same 64-dimensional 

vector space. The eight vital signs are processed through unidirectional LSTM layers with a hidden size of 

64 to exploit the temporal relationships inherent in the data, while the remaining 39 feature types are 

mapped via feed-forward layers, reflecting their simplicity. Subsequently, a fully connected directed graph 

is constructed for each patient comprising 47 nodes and 2209 edges. Each node corresponds to one of the 

47 types of features. The 64-dimensional vectors, generated by the projection layers, are included in the 

graph as node attributes, aligning with their respective nodes. A GAT with a hidden dimension of 64, 4 

attention heads, and ReLU as the activation function, is utilized to generate the edge-level attention values 

and update the node attributes. A global attention pooling layer then computes a weighted sum of the 

updated node attributes across the 47 nodes based on the node-level attention values. This computation 

yields a 64-dimensional vector representing the entire graph. This vector is subsequently processed through 

a feed-forward layer with a sigmoid activation function to yield the predicted likelihood of 7-day ICU stay. 

The node- and edge-level attention values are then utilized to construct the patient-specific relational graph 

and explain the corresponding ICU LoS prediction.  

4. Results 

Due to the intrinsically explanatory nature of our graph learning model, it is imperative to assess its 

predictive capabilities and the quality of explanations generated. This two-pronged evaluation ensures a 
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comprehensive understanding of the ability of our graph learning model to not only predict accurately but 

also explain the prediction. We first compare the predictive performance of our graph learning-based model 

(henceforth referred to as our graph model) with EBM, a custom-built DL model (henceforth referred to as 

the DL model), and other widely used ML algorithms.3 This comparative evaluation is designed to validate 

the reliability and efficacy of our graph-centric approach for accurate prediction (Li et al. 2020, Liu et al. 

2020). Next, we shift our focus to the explanation dimension of our model and compare the explanations 

generated by various XAI techniques. Due to our interest in generating interaction-based explanations, we 

compare the following XAI approaches: our graph model, EBM, IH, and FSI, where the latter two methods 

explain the DL model (henceforth referred to as DL-IH and DL-FS, respectively). These alternative XAI 

methods are included as benchmarking targets based on the classification in Table 1. Implementations 

details of these methods are provided in Appendix B. 

4.1 Prediction Comparison 

Table 4 provides a detailed comparison of the predictive performance of various models, including our 

graph learning model, the DL model, EBM, and conventional ML models such as XGBoost, random forests, 

and logistic regressions, in predicting the likelihood of ICU discharge within 7 days (of admission) across 

10 cross-validation runs with an 80/20 split of training/test data. Notably, our graph model and DL models 

demonstrate identical performance in terms of the area under the receiver operating characteristic curve 

(AUROC) and area under the precision-recall curve (AUPRC), with scores of 0.824 and 0.899, respectively. 

The EBM model also reports comparable AUROC and AUPRC values of 0.824 and 0.898, respectively, 

and exhibits the highest F1 score of 0.839 with a prediction accuracy of 0.771, matching that of the DL 

model. Since approximately 30% of patients in our data remain in the ICU for more than seven days, metrics 

such as AUROC and AUPRC are important as they are less prone to the effects of class imbalance, 

compared to accuracy or F1 scores. The predictive performance of our graph learning model is superior to 

conventional ML models and comparable to the DL model and EBM. 

 
3 Microsoft actively supports the EBM package, which is more up-to-date and accessible compared to NODE-GAM.  
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While the focus of our study is to predict 7-day ICU discharge, Appendix C broadens the scope of 

our analysis by evaluating both prediction and explanation capabilities of our graph learning model and the 

EBM, to predict 3-day ICU discharge and numeric LoS. Although EBM demonstrates slightly higher 

precision in predicting 3-day discharge, our model offers superior capability in predicting numeric LoS. 

However, with a mean average error exceeding 5 days, we observe that numeric LoS predictions lack 

practical relevance in a clinical setting.  

4.2 Explanation Comparison 

After assessing the predictive accuracy of our graph learning model, our focus shifts to its ability to explain 

the relationships identified by the model. Our goal is to assess whether our graph learning model and various 

interaction-based XAI techniques can generate meaningful explanations based on the interactions among 

patient attributes. In the ensuing analysis, we visually contrast the explanations generated by our graph 

learning model with other interaction-based XAI methods. This includes comparison of individual patients, 

patient cohorts, and evaluation of the significance of interaction-based explanations. We also explore their 

computational efficiency based on time required to provide explanations for an individual patient. 

4.2.1 Computation Time 

Before we present explanations provided by various XAI methods, we first evaluate the computation time 

required by each method to generate explanations for an individual patient. This is particularly pertinent 

for interaction-based explanations that necessitate computing the importance of at least N2 pair-wise 

interactions—compared to feature-based explanations that only require computing the significance of N 

features. Table 5 compares the computational efficiency of four types of XAI methods deployed to explain 

the predicted outcome for a single patient. These include two intrinsic (EBM and our graph learning model) 

and two post-hoc (DL-FS and DL-IH) methods.  

We observe a notable discrepancy between intrinsic and post-hoc methods with respect to the 

computation time to generate explanations. Specifically, both EBM and our graph learning model can 

produce explanations in under 0.1 seconds, whereas post-hoc methods require significantly more time. For 
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instance, the DL-FS method averages 20 seconds, while DL-IH requires up to 4 minutes to generate 

explanations for a single patient. Due to the considerably poorer performance of DL-IH, we exclude it from 

subsequent analysis.4 We observe that generating explanations is significantly quicker for intrinsic XAI 

methods, since a simple forward pass through the neural network (for our graph learning model) or the 

ensemble of decision trees (for EBM) is sufficient to generate the relevant explanation. On the contrary, 

both post-hoc techniques must, by design, calculate the relevance of each feature and their interactions at 

the time of generating the explanation, a process that is more computationally intensive. 

4.2.2 Patient-level Explanation 

In this analysis, we compare the explanations generated by DL-FS, EBM, and our graph learning model, to 

predict the LoS of a 46-year-old male patient, admitted through the emergency department and treated in 

the surgical ICU. The patient had an ICU stay exceeding seven days which was accurately predicted by all 

models (i.e., binary prediction LoS > 7 days). Figure D1 in Appendix D displays the explanations from the 

EBM model for the top 15 terms—either a feature or interaction between two specific features—that impact 

LoS prediction for this patient. Based on the EBM results, there is a 34.2% chance of this patient being 

discharged within 7 days. It identifies respiratory system-related diagnosis as a critical factor, suggesting 

its presence decreases the likelihood of ICU discharge within seven days by 27.3% (=1-e^-0.32). We note 

that, among the top 15 terms (in Figure D1), all are features and do not include any feature interactions.  

Figure D2 in Appendix D provides a graphical illustration of the explanation of the DL-FS model, 

showing salient features and interactions that explain the LoS prediction. It estimates a 4.6% likelihood of 

ICU discharge within 7 days and identifies the prevalence of respiratory system-related diagnosis in 

reducing the likelihood of 7-day discharge by 12.29%. Vital signs, such as mean blood pressure and glucose 

levels, are also noteworthy as predictive indicators. DL-FS does not assign significant importance to feature 

interactions, with the most significant interaction only having a -0.007% impact on LoS prediction. 

On the other hand, Figure 2 displays the explanations associated with our graph learning model, 

 
4 In Appendix B, we explain why the DL-IH method is much slower compared to other methods.  
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which predicts an 8.5% likelihood of discharge within 7 days. The graph representation visually emphasizes 

the importance of features and feature interactions through the size of nodes and width of edges in the 

personalized graph. While our model identifies respiratory system-related diagnosis as a prominent feature 

that receives 71.81% of the total attention, a closer examination reveals that significant components of this 

attention—specifically, 17.954%, 17.954%, and 15.629%—can be attributed to the interactions between 

respiratory system diagnosis and patient age, nutritional and anti-inflammatory agents, and analgesics and 

central nervous system agents, respectively. This result suggests that the attention assigned to respiratory 

system diagnosis can be attributed to its interactions with patient age and medications.  

Compared to EBM and DL-FS, our graph learning model generates a more comprehensive 

explanation of ICU LoS that identifies the nuanced impact of feature interactions. For instance, it identifies 

the interaction between patient age and respiratory system diagnosis as an important explanatory attribute. 

Such an interaction is medically sound, since prior research has observed gradual deterioration in lung 

function as patients age, emphasizing the need to consider patient age when diagnosing and treating 

respiratory system conditions (Sharma and Goodwin 2006).  

4.2.3 Population-level Explanation 

Next, we aggregate patient-level explanations generated by the three XAI methods—DL-FS, EBM, and our 

graph learning model—at the cohort  level to demonstrate the importance of features and feature 

interactions across the patient population. By averaging the attention scores of nodes (representing features) 

and edges (representing interactions) from our graph learning model across patients, we identify key 

features and interactions that are relevant for LoS prediction across the patient population. Similarly, the 

EBM model calculates global term importance for each feature and pairwise interaction as the mean of 

absolute importance values across all patients. We apply a similar approach to calculate the mean absolute 

values of Faithful Shapley scores which measure the average influence of each feature or interaction on 

prediction of LoS. Tables 6 and 7 provide a comparative evaluation of the salient features and interactions 

determined by the three XAI methods. Although the specific importance scores are not directly comparable 
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across the three methods, the relative rankings of the features and interactions can be compared. 

Based on the DL-FS results in the left panel of Table 6, we observe that patient diagnoses, age, and 

blood pressure during the final two hours of the ICU stay, are significant predictors of LoS. Similarly, the 

EBM model identifies different types of diagnosis, ICU type, and medications, as salient factors in 

predicting LoS, with respiratory system diagnosis emerging as the most influential factor. Our graph 

learning model also reports patient diagnoses, age, vital signs, and ICU type, as important features. On 

average, 11.5% of the attention is assigned to respiratory system diagnosis, demonstrating its role as the 

most important feature. Overall, our results indicate a high level of consistency across the three XAI 

methods with respect to salient features for LoS prediction.  

On the other hand, the results reported in Table 7 provide a different perspective on the explanations 

related to feature interactions. A closer examination of mean absolute Faith SHAP scores shows that the 

DL-FS method overlooks the importance of feature interactions. For example, admission to a medical 

intensive care unit (MICU) is ranked as the tenth most important feature by Faith SHAP, influencing the 

predicted likelihood of an extended ICU stay by an average of 0.69%. In comparison, the top-rated 

interaction between systolic and mean blood pressure values (during hours 46-48) has a trivial importance 

score of 0.02%, implying an almost negligible impact on the likelihood of LoS prediction. Our results 

suggest that DL-FS struggles to assign substantive importance to feature interactions. In contrast, EBM and 

our graph learning model attribute meaningful significance to feature interactions. The mean importance 

scores of feature interactions identified by these methods are substantial compared to individual features. 

Specifically, we observe greater magnitude of importance scores associated with the interactions between 

patient age, diagnosis, medications, and vitals, such as body temperature, heart rate, and blood pressure.  

4.2.4. Distance-based Separation 

Quantitative evaluation of explanations generated by various interaction-based XAI methods poses a 

significant challenge. Existing evaluation techniques deployed in prior XAI research primarily focus on 

feature-level analysis or utilize synthetic data with predetermined underlying relationships (Janizek et al. 

2021, Kim et al. 2023). Consequently, these methods are not directly applicable to assess the quality of 
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interaction-based explanations in our research context. Drawing on the literature on concept-based 

explanations, we develop an approach to evaluate the efficacy of interaction-based explanations by 

measuring their ability to distinguish between different outcomes (Crabbé and van der Schaar 2022). We 

posit that including interactions in explanations, as opposed to utilizing only features, should improve the 

ability to distinguish patients with different LoS outcomes. We utilize t-distributed stochastic neighbor 

embedding (T-SNE), a well-known technique for dimension reduction and visualization, to process and 

visualize the high-dimensional explanations generated. Specifically, we generate 2-dimensional T-SNE 

plots for the patient cohort using our explanations from the DL-FS, EBM, and the graph learning model. 

For each XAI method, two plots are generated: one based on the importance scores of the top features, and 

another based on the scores of top features and interactions. Each patient is then classified based on their 

LoS outcomes, specifically whether they are discharged within 7 days. 

Our proposition suggests that T-SNE plots generated from feature and interaction importance 

scores should offer better separation between patients with different outcomes compared to T-SNE plots 

that only include feature importance scores. We assess the separation within the T-SNE plots using the 

Distance-based Separation Index (DSI) (Guan and Loew 2022). DSI measures the degree of separability 

between two sets of data, with a value between 0 to 1, with a higher DSI value indicating a greater degree 

of separation. By examining the DSI values, we can determine the effectiveness of including interaction-

based elements in explanations, with the expectation of observing greater separation based on explanations 

provided by including feature- and interaction-based importance scores. 

Table 8 shows the average DSI improvement for the DL-FS, EBM, and graph learning models, 

highlighting the impact of interaction-based explanations in T-SNE plots. These improvements are 

calculated across ten cross-validation runs, utilizing different training/test splits generated randomly with 

each pair of T-SNE plots derived from the respective test dataset. We evaluate the statistical significance 

of these improvements using a paired t-test. The results suggest that inclusion of interaction terms in the 

graph learning model enhances patient separation in the corresponding T-SNE plots. This improvement is 

statistically significant across all T-SNE configurations for the graph learning model, as shown in Table 8. 
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However, inclusion of interaction terms in the EBM and DL-FS models does not significantly enhance their 

ability to distinguish patients based on LoS. This indicates that the interaction-based components of model 

explanation from EBM and DL-FS do not augment the insights provided by the feature-based components. 

The design philosophy of the GA2M family of algorithms prioritizes building an optimal GAM-

based on features before identifying and ranking potential feature interactions within the residuals. Only 

top-ranked feature pairs determined through cross-validation are included in the final model. This 

sequential estimation approach which focuses initially on individual features, and subsequently on their 

interactions, may explain why EBM yields high predictive accuracy without providing interaction-based 

explanations. Similarly, while FSI does not employ a sequential process to identify the importance of 

features and interactions, it relies on linear regressions to estimate their contributions simultaneously. This 

approach can obscure the true impact of interaction terms because the importance of feature interactions 

may be overshadowed by the magnitude of the importance scores of individual features (as shown in Tables 

6 and 7). Hence, FSI may fail to accurately represent the distinct impact of interaction terms, thereby 

limiting the interpretability and insights derived from interaction-based explanations. In contrast, our graph 

learning model adopts a novel methodology by first assessing the significance of feature interactions using 

GAT before evaluating the importance of individual features. This ensures that our interaction-based 

explanations can consistently enhance separation between patients with different LoS outcomes.  

We illustrate this separation in Figures 3 and 4 where we present the T-SNE plots derived from 

explanations generated by our graph learning model. These plots compare the visual clustering of patients 

based on 30 features versus a combination of 30 features and 30 interactions, with both plots subjected to 

a perplexity of 100 and 10,000 iterations. Figure 3 includes feature interactions and reveals three clusters: 

patients in the bottom left cluster generally have longer ICU stays, those in the top center cluster have 

shorter stays, and a gradient from left to right in the lower right cluster indicates increasing LoS. Figure 4 

represents a T-SNE plot without interactions which does not indicate a clear separation between clusters. 

The DSI scores are 0.171 and 0.097 for the T-SNE plots with and without interactions, respectively, which 

suggest that interaction-based explanations contribute to an improvement of 0.074 in DSI. 
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In Appendix E, we further evaluate the utility of the interaction-based explanations of our graph 

learning model, focusing on the degree of separation enabled by feature interactions. We demonstrate that 

the attention values attributed to two interactions, exhibit significantly different distributions across patient 

groups in Figures E1 and E2. Specifically, patients with ICU stays longer than seven days are more likely 

to exhibit salient attention on the interaction between patient age and respiratory system diagnoses. In 

contrast, patients with shorter stays are more likely to exhibit salient attention on the interaction between 

patient age and mental disorders. Although we highlight only two of the top ten interactions, the importance 

of all interactions in Table 7 underscore significant differences between the two patient groups. Our XAI 

approach, with its emphasis on interaction-based explanations and impact on predictive performance, 

contributes to the emergent research on explainable AI that requires novel ways of abstraction and 

formulation of new design principles and insights (Gregor and Hevner, 2013). 

5. Evaluation of Model Explainability  

In this section, we further validate the explanations generated by our graph learning model, based on the 

Co-12 framework (Nauta et al. 2023). The Co-12 framework is a collection of 12 key properties that can 

be used to systematically evaluate explanations generated by machine learning models. Evaluation of XAI 

methods is a nascent area of research and early studies have primarily focused on the assessment of post-

hoc, feature-based XAI methods (Janizek et al. 2021, Kim et al. 2023). However, there is a notable research 

gap with respect to the systematic evaluation of intrinsic, interaction-based XAI methods. Our evaluation 

approach includes several tests designed to assess whether the explanations generated by the graph learning 

model adhere to the Co-12 framework. We provide a summary of our evaluation approach in Table 9. 

5.1. Correctness, Completeness, and Compactness 

The first two properties, correctness and completeness, are foundational to assess the quality of explanations 

provided by XAI methods. Correctness ensures that explanations accurately reflect the prediction of the 

underlying model, while completeness emphasizes the need for explanations to fully represent the model 
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decision-making process. Since our model explanations are intrinsically derived from the prediction model, 

the correctness of explanations is inherently assured. Since these explanations are generated directly by the 

model, they offer a complete view of the decision process by design. This relationship between model 

prediction and explanation distinguishes intrinsic methods from post-hoc alternatives. Hence, we argue that 

our graph learning model satisfies both correctness and completeness properties of the Co-12 framework.  

The compactness property states that explanations should be succinct and sparse. Figure 2 suggests 

that the explanations of our graph learning model are compact, focusing on a limited set of key features and 

interactions. Furthermore, the results described in Appendix F demonstrate that the distribution of node and 

edge importance scores adheres to a zero-inflated pattern, indicating that our model assigns substantial 

attention only to a limited number of nodes and edges across all patients.  

5.2 Consistency, Continuity, and Contrastivity 

Next, we evaluate the explanations provided by our graph learning model through the lens of consistency, 

continuity, and contrastivity. These properties suggest that the ability of the XAI model to provide 

explanations should accurately reflect the importance of input features and its ability to generate reliable 

and meaningful insights. We evaluate these properties by perturbing the most and least significant 

diagnoses, i.e., respiratory system diagnosis as the most important and blood-forming organs as the least 

important. For patients diagnosed with both categories of conditions, we generate explanations using the 

original data, a perturbed version excluding blood-forming, organ-related diagnosis, and another excluding 

respiratory system-related diagnoses. The impact of perturbation analyses using aggregated graph-based 

explanations is presented in Figures 5a, 5b, and 5c. 

While Figure 5a represents the explanations based on the original data, Figure 5b demonstrates that 

perturbation of a less critical diagnosis category—blood-forming organs—across the patient cohort, does 

not significantly alter the explanation or attention values of the nodes (features). For instance, the 

prominence of respiratory system diagnosis remains unaffected as do other important nodes such as patient 

age, mental disorder, and injury and poisoning diagnosis. This stability indicates that variations in less 
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critical diagnostic categories have negligible impact on model explanation. Conversely, Figure 5c 

demonstrates that perturbation of an important feature—respiratory system diagnosis—leads to a drastic 

change in the importance of other features and interactions. For example, patient age emerges as the most 

significant node in explaining LoS prediction when respiratory diagnosis is perturbed. Overall, perturbation 

analysis confirms our model adherence to the principles of consistency, continuity, and contrastivity. 

5.3. Confidence 

Next, we utilize logit regressions to assess the property of confidence, which is related to probability-based 

confidence measures of model explanation. Specifically, we focus on statistical confidence of the 

significance of interactions identified by our model. We compare two logit models: one with only salient 

features identified by our graph learning model as independent variables, and another which includes both 

salient features and interactions. The goal is to determine whether inclusion of the interaction terms 

improves the goodness of fit for predicting ICU stays. We present a comparison of the two logit regression 

models in Table 10. The logit regression utilizing interactions increases McFadden's R-square from 0.218 

to 0.228, statistically significant based on the likelihood ratio test and reduces the Akaike Information 

Criterion (AIC) from 22,156 to 22,069. These results confirm the importance of salient interactions 

identified by our graph learning model and establish their statistical significance with high confidence.  

5.4 Coherence and Covariate Complexity 

Next, we evaluate the coherence of our model explanations with the medical literature. Coherence ensures 

that explanations align with domain knowledge while covariate complexity requires explanations to be 

understandable to the target audience. Such properties are particularly important as prior research suggests 

that XAI methods can enhance user trust in algorithms and confidence in decision making when designed 

using task-specific domain knowledge (Lee and Ram 2023). We assess these properties by cross-

referencing salient interactions identified by our model with extant clinical research. Table 11 augments 

the top 10 salient interactions identified by our graph learning model, with clinical evidence which provide 

evidence-based support for the validity of our model explanations. For example, our model highlights the 
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interaction between “nutritional and anti-inflammatory agents” and heart rate as important predictors of  

ICU LoS. This is supported by the medical literature, which suggest that short-term usage of corticosteroids, 

a type of anti-inflammatory agent, is associated with significant decrease in heart rate and can lead to 

bradycardia (Brotman et al. 2005). Similarly, the interaction between respiratory system diagnosis and 

patient age reflects the impact of age on lung capacity and increased risk of respiratory failure, which may 

affect recovery time and LoS (Sharma and Goodwin 2006).  

These results indicate that the explanations generated by our graph learning model are not only 

consistent with evidence-based medicine but also provide insights that are unavailable using traditional 

XAI methods. By using a socio-technical lens to evaluate explainability, we test and validate the insights 

from our approach using the rich domain knowledge on ICU LoS in the medical literature.   

6. Discussion 

In this section, we discuss the results of a small-scale user study based on our XAI approach and the 

implications of our proposed XAI approach for research and practice. 

6.1 User-based Evaluation 

To evaluate the usefulness of our graph learning model in clinical settings, we designed a small-scale user 

study based on a survey of ICU clinicians (Kim et al. 2023). The questionnaire was comprised of five 

statements based on the explanations between patient attributes and ICU LoS, as identified by our graph 

learning XAI approach. The respondents include six practicing ICU physicians in central Texas, who rated 

the statements on a 5-point Likert scale, where 1 = "Strongly Disagree," 2 = "Disagree," 3 = "Neither Agree 

nor Disagree," 4 = "Agree," and 5 = "Strongly Agree." The survey also included an open-ended question to 

elicit physician feedback regarding the feasibility of using our XAI approach to improve care delivery. 

Tables H1 and H2 in Appendix H present the survey statements, mean Likert scores from 

respondents, and their written responses to the final question. The results show that ICU clinicians generally 

disagreed with the cohort-level statements (i.e., Q1 and Q2), with mean Likert scores below 3. However, 

they generally agreed with individual patient-level statements (i.e., Q3). The salient interaction between 
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patient age and respiratory system diagnoses, as illustrated in Figure 2, is discussed in statement 3a. 

Statements 3b and 3c provide additional explanations on the role of skin issues and mental disorders.  

We anticipated that physicians would concur with our model prediction based on statement 3a, with 

statements 3b and 3c having minimal impact on physician opinion. We observe that physicians generally 

agreed with statement 3a, with a mean Likert score of 3.33, with similar responses to statements 3b and 3c. 

Hence, their feedback with respect to the individual patient-level insights of our XAI model indicates a 

valuable role in clinical settings, especially for care personalization based on unique patient characteristics. 

Four of the six physicians observed that our model can improve staffing and resource management 

efficiency, enabling better planning for patient scheduling. Our user study of ICU physicians highlights the 

impact of (a) salient design artifacts (i.e., feature interactions) on users who may otherwise ignore their 

importance for LoS prediction when using AI-enabled decision tools, and (b) sociotechnical considerations 

related to the use of our model for patient-centered care (Abbasi et al. 2024). 

6.2 Research Implications 

Our research demonstrates the importance of intrinsically generated explanations that identify important 

interactions between patient attributes for accurate prediction of ICU LoS. Compared to interaction-based 

XAI methods, our graph learning model accurately identifies complex, non-linear relationships in the 

underlying data, thereby offering a more nuanced understanding of their impact on LoS prediction. Our 

approach demonstrates that interaction-based explanations can provide more accurate and comprehensive 

understanding of the underlying prediction model, which is particularly important for risk prediction in 

healthcare. Furthermore, the results of our user study indicate general agreement among ICU clinicians 

with the patient-level explanations offered by our XAI approach and underscores the practical relevance of 

our graph learning model. Our model can enhance clinical decision-making and improve ICU operational 

efficiency by providing physicians with more transparent and comprehensible insights into LoS prediction 

not only in the ICU but other hospital settings as well. 

 From a methodology perspective, our model provides a unique solution to the challenge of 
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designing prediction models that are accurate and capable of providing intrinsic, interaction-based 

explanations. By operationalizing interaction-based explanations as a patient-level graph that describes the 

relationships between patient attributes, our model learns the structure of patient-level graphs by deploying 

an end-to-end, attention-based learning approach. Our approach provides accurate identification of the 

underlying feature interactions that explain predicted outcomes, and thereby, bridges extant research on 

graph learning and XAI methods. In other words, our research expands the application space of graph 

learning techniques and provides new tools for developing XAI methods. Overall, our graph learning 

approach provides a novel contribution from methodological and application perspectives to address the 

problem of generating intrinsically interpretable solutions for risk prediction.   

Our results also provide a solution to the computation complexity of O(N2) associated with 

examining all potential interactions between model features. By adding intrinsic explanation capabilities to 

the prediction model, computation complexity is internalized in model training, thereby enabling more 

computationally efficient explanations compared to extant post-hoc methods. Our model also generates 

interaction-based explanations significantly faster than alternate post-hoc methods.  

Our approach uses node attributes derived from structured numerical data. However, the healthcare 

sector also generates vast amounts of unstructured multi-modal data, including medical images and clinical 

notes. Integrating unstructured data using new types of AI methods into our XAI approach could 

significantly enhance its predictive and explainability. For instance, medical images, such as radiographs 

and MRIs, can be processed using CNNs to extract high-level representations. These CNNs, pre-trained on 

large medical image datasets, generate vector representations that represent important visual features and 

influence prediction of patient outcomes (Salehi et al. 2023). Similarly, recent advances in large language 

models have enabled synthesis of vector embeddings which represent large volumes of clinical notes. 

Transformer-based models, such as Med-PaLM, can generate contextualized vector embeddings 

encapsulating the semantic nuances in clinical notes (Singhal et al. 2024, Nazi et al. 2024). 

It is also possible to align vector representations from distinct data modalities within a unified 

vector space, thereby facilitating integration into a common graph structure. Techniques such as projection 
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layers can map each the embeddings of each modality into a common dimensional space. Similarly, 

contrastive learning techniques, exemplified by models like Contrastive Language-Image Pre-training, can 

facilitate semantic alignment of representations across different modalities (Radford et al. 2021). By 

generating and storing unified vector representations of multimodal data, our approach can integrate vector 

representations as node attributes when constructing patient graphs. This integration improves model 

predictive accuracy and explanatory power by enabling cross-modality explanations. 

The ability to include multi-modal data as nodes enhances the versatility of our graph learning 

approach. It can be adapted to other predictive tasks in healthcare, including prediction of readmission rates, 

disease progression, and risk of adverse events, which often share similar input data and necessitate similar 

types of explanations (Mahmoudi et al. 2020, Tjendra et al. 2020). For example, understanding how drug-

drug interactions contribute to adverse events highlights the need for interaction-based explanations when 

predicting health outcomes (David et al. 2021, Magro et al. 2012). 

7. Conclusions 

In this study, we propose and test a novel graph learning-based explainable AI model to address the 

challenge of developing explainable predictions of ICU LoS. Our model intrinsically constructs a patient-

level graph which identifies the importance of features and feature interactions during prediction. Our 

model demonstrates superior explanation capability based on identification of important feature 

interactions, compared to traditional XAI methods for predicting LoS.  We supplement our XAI approach 

with  a small-scale user study which demonstrates that our model provides accurate explanations that can 

lead to greater user acceptance of AI model-based decisions by contributing to greater interpretability of 

the predictive artifacts (Abbasi et al. 2024). Our model lays the foundation to develop interpretable, 

predictive tools which healthcare professionals can utilize to improve ICU resource allocation and enhance 

the clinical relevance of AI systems in providing effective patient care.  

Although our primary research setting is the ICU, our graph learning model can be generalized to 

other healthcare contexts to accurately identify key feature interactions for prediction of other health 
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outcomes such as mortality, readmission risk, and hospitalizations. As experts increasingly recognize the 

limitations of post-hoc, feature-based explanations, our model offers a novel approach to generate intrinsic, 

interaction-based explanations that are promising in contexts that require an understanding of complex 

feature interactions and their impact on risk prediction (Petch et al. 2022, Carmichael and Scheirer, 2023). 

7.1. Limitations and Future Research 

In recognizing the limitations of our research, we also identify several avenues for future research. Our 

graph learning model is designed with broader applicability in mind. It can be adapted to various healthcare 

settings and potentially extended beyond healthcare applications. Future research may validate our model 

using data collected across a diverse group of hospitals, such as non-teaching institutions or safety-net 

hospitals, for various health outcome prediction tasks. We acknowledge that clinical features, such as 

diagnosis and medications, are represented in an abstract form, while clinical notes, radiology images, and 

lab results, are omitted due to data sparsity and quality challenges. Future research can extend our model 

to include such multi-modal data or evaluate the potential to utilize unstructured clinical notes by integrating 

LLMs with our graph learning model. While the user study offers preliminary insights into the practical 

relevance of our model, future studies may adopt a comprehensive approach, using randomized field 

experiments to study how XAI models can help practitioners improve care delivery. Last, although we 

provide a review of extant deep learning and XAI methods in Table A1 of the Appendix, we acknowledge 

the challenges and limitations in conducting an exhaustive review across multiple streams of literature.   
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Figures and Tables 
 

  
Figure 1. Design Framework of Graph Learning Model 

 

  

Figure 2. Personalized Explanations of Graph Learning Model  
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Figure 3. Visualization of T-SNE Separation with Feature Interactions.  

 

 
 

Figure 4. Visualization of T-SNE Separation without Feature Interactions 
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Figure 5a. Original Data  

 

Figure 5b. Perturbation of Diagnosis associated with Blood-forming organs  

 

Figure 5c. Perturbation of Diagnosis associated with Respiratory system 

Figure 5. Results of Perturbation Analysis   
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Table 1. Comparison of XAI Methods based on Explanation Type  
 

 Feature-Based Interaction-Based 

Post-Hoc 

Integrated Gradient (IG), Local 
Interpretable Model-agnostic 
Explanations (LIME), Shapley 
Additive Explanations (SHAP) 

Gradient based: Integrated Hessian (IH) 
SHAP based: Shapley Interaction Index (SII), Shapley 
Taylor Index (STI), Faithful Shapley Index (FSI) 

Intrinsic 
Regressions, simple decision trees Generalized Additive Model with interactions (GA2M) 

* Our graph learning-based model 

 
Table 2. Summary of Research Contributions  

 
XAI Method LoS Prediction Graph Learning XAI 

Our Graph 
Learning 
Approach 

Predicts ICU LoS using 
intrinsically explainable 
predictions by identifying 
key interaction-based 
explanations.  

Extends graph learning to XAI 
by synthesizing existing methods 
to construct interpretable graphs, 
and handle data without inherent 
graph structures. 

Interaction-based explanations 
that enhance the explanatory 
power and interpretability of 
feature-based explanations. 

EBM 
Not used for LoS 
prediction. 

Does not use graph structure for 
prediction or explanation. 

Explanations based on feature 
attributes with less emphasis on 
feature interactions. 

FSI 
Not used for LoS 
prediction. 

Does not utilize graph structure 
for prediction or explanation of 
outcomes. 

Explanations based on feature 
attributes with less emphasis 
on feature interactions. 

 
Table 3. Descriptive Statistics of Model Variables 

Binary Output Variable 
Variable Name Description and Unit of Measure Distribution 
7-day discharge Binary indicator of ICU patients discharged after the seventh day 28.79% 
Selected Inputs 

Variables Vital Signs 
Heart Rate Heart rate of the patient measured in beats per minute 94.06 (25.22) 
Mean BP Mean blood arterial pressure of the patient in mmHg 78.76 (14.02) 
Respiration Rate Patient respiration rate in breaths per minute 19.36 (5.20) 
Body Temperature Body temperature of the patient in degree Celsius 37.02 (0.83) 
Glucose Concentration of glucose present in the blood of patients in mg/dl 141.60 (55.82) 
Bihourly Entry 
Count 

Count of vital sign recordings during the 2-hour period 2.97 (4.32) 

Administrative Variables 
Age Patient age in years 55.47 (27.59) 
GenderF Binary (1 = patient is female) 44.10% 
Ins Medicare Binary (1 = patient insurance is Medicare) 47.65% 
Adm Elective Binary (1 = patient from elective admission) 12.35% 

Diagnosis Variables 
Respiratory Binary (1 = patient has respiratory system related diagnosis under ICD 9) 50.39% 
Circulatory Binary (1 = patient has circulatory system related diagnosis under ICD 9) 73.74% 
Injury Binary (1 = patient has injuries and poisoning diagnosis under ICD 9) 43.51% 

Standard deviations (if applicable) are shown in parentheses. 
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Table 4. Predictive Performance Comparison 
 

 Method Accuracy AUROC AUPRC F1 score 

1 Graph Learning-based Model 0.767 
(0.003) 

0.824 
(0.002) 

0.899 
(0.003) 

0.829 
(0.003) 

2 DL Model 0.771 
(0.004) 

0.824 
(0.004) 

0.899 
(0.003) 

0.831 
(0.004) 

3 EBM 0.771 
(0.005) 

0.824 
(0.006) 

0.898 
(0.005) 

0.839 
(0.003) 

4 XGBoost 0.762 
(0.004) 

0.810 
(0.006) 

0.890 
(0.005) 

0.831 
(0.003) 

5 Random Forest 0.755 
(0.05) 

0.803 
(0.007) 

0.880 
(0.005) 

0.836 
(0.003) 

6 Logistic Regression 0.732 
(0.005) 

0.729 
(0.007) 

0.826 
(0.007) 

0.818 
(0.004) 

Standard deviations are shown in parentheses. 
 

Table 5. Computation Time for Patient-Level Explanation 

 Intrinsic Methods Post-Hoc Methods 
XAI Method EBM Graph Learning 

Approach  
DL-FS DL-IH 

Time (in seconds) 0.05 0.1 20 240 
 

Table 6. Salient Features identified by XAI Methods 

DL-FS Model EBM Model Graph Learning Model 

Feature Name Avg. Absolute 
FSI Score Feature Name Global Term 

Importance Feature Name Avg. Node 
Attention 

Respiratory system 
related diagnosis 0.03537 Respiratory system 

related diagnosis 0.56907 Respiratory system 
related diagnosis 0.11531 

Patient Age 0.02792 Infectious and parasitic 
diseases 0.18134 Heart Rate 0.08628 

Mean BP  
(Hr 46-48) 0.02719 Injuries and poisoning  0.15509 Patient Age 0.07790 

Systolic BP  
(Hr 46-48) 0.01418 Diseases of the 

genitourinary system 0.10952 Injuries and 
poisoning 0.06780 

Injuries and 
poisoning 0.01313 Symptoms, signs, and 

ill-defined conditions 0.10670 Mental Disorders 0.05178 

Diastolic BP 
 (Hr 46-48) 0.01080 Nervous system and 

sense organs diagnosis 0.10099 Body Temperature 0.04150 

Glucose 
(Hr 46-48) 0.00951 

Nutritional and Anti-
inflammatory Agents 

(Day 2) 
0.09521 Glucose 0.03807 

Infectious and 
parasitic disease 0.00899 ICU type (CSRU) 0.08764 MSK and Connective 

Tissue Diagnosis 0.03585 

Glucose 
(Hr 44-46) 0.00702 

Analgesics and Central 
Nervous System 
Agents (Day 2) 

0.07710 ICU Type 0.03502 

ICU type (MICU) 0.00694 ICU type (MICU) 0.07092 Symptoms, signs, and 
ill-defined conditions 0.03161 

CSRU: Cardiac Surgery Recovery Unit, MICU: Medical Intensive Care Unit. 
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Table 7. Salient Interactions identified by XAI Methods 

DL-FS Model EBM Model Graph Learning Model 

Interaction Name 
Average 
Absolute 

FSI Score 
Interaction Name 

Global 
Term 

Importance 
Interaction Name 

Average 
Edge 

Attention 

Systolic BP × Mean BP  
(Hr 46-48) 0.0002 

Metabolic and Anti-
infective × Analgesics 
and Central Nervous 

System Agent (Day 2) 

0.0399 
Nutritional and Anti-
inflammatory Agents 
(Day 2) -> Heart Rate 

0.0301 

Mean BP (Hour 46-48) 
× Insurance  

(Government Subsidy) 
0.0002 Patient Age × 

Admission (elective) 0.0377 
Patient Age -> 

Respiratory system 
related diagnosis 

0.0285 

Oxygen Level (Hr 46-
48) × neoplasms 0.0002 

Oxygen Level (Hr 12-
14) ×  Vital Sign Count 

(Hr 34-36) 
0.0337 

Nutritional and Anti-
inflammatory Agents 

(Day 2) -> Patient Age 
0.0228 

Oxygen Level (Hr 46-
48) × Ethnicity (Eastern 

European) 
0.0002 

ICU type (CSRU) × 
Diseases of the 

genitourinary system 
0.0297 

Body Temperature -> 
Respiratory system 
related diagnosis 

0.0199 

Oxygen Level (Hr 46-
48) × ethnicity 

(Filipino) 
0.0002 Mean BP (Hr 44-46) × 

Diastolic BP (Hr 46-48) 0.0294 Body Temperature -> 
Patient Age 0.0169 

Oxygen Level (Hr 46-
48) + Dermatological 

and Respiratory Agents 
(Day 1) 

0.0002 

Diastolic BP (Hr 4-6) × 
Antineoplastic and 
Immunomodulating 

Agents (Day 2) 

0.0248 Patient Age -> Injuries 
and poisoning 0.0166 

Mean BP (Hr 46-48) × 
complications of 

pregnancy 
0.0001 ICU type (CSRU) × 

Injuries and poisoning 0.0242 

Analgesics and Central 
Nervous System Agents 
(Day 2)-> Respiratory 

system related diagnosis 

0.0164 

Glucose (Hr 44-46) × 
ethnicity (Thai) 6E-05 

Heart Rate (Hr 20-22) × 
Nutritional and Anti-
inflammatory Agents 

(Day 2) 

0.0228 
Nutritional and Anti-

inflam Agents (Day 2) 
-> Mental Disorders 

0.0142 

Oxygen Level (Hr 38-40) 
× symptoms, signs, and 
ill-defined conditions 

4E-05 
Heart Rate (Hr 12-14) × 

Antineoplastic & 
Immuno Agents (Day 2) 

0.0205 Patient Age -> Heart 
Rate 0.0131 

Respiration Rate (Hr 
38-40) × Diastolic BP  

(Hr 40-42) 
3E-05 

ICU type (MICU) × 
Respiratory system 
related diagnosis 

0.0203 Patient Age -> Mental 
Disorders 0.0128 

CSRU: Cardiac Surgery Recovery Unit, MICU: Medical Intensive Care Unit. 
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Table 8. Improvement in DSI with Inclusion of Salient Interactions 

Hyperparameters Top X features versus  
Top X features and Interactions 

Top X T-SNE 
Perplexity 

T-SNE 
Iteration DL-FS EBM Graph-Learning 

Model 
10 100 5000 -0.00061 -0.00332 0.02935*** 
20 100 5000 -0.00061 -0.01671** 0.03470** 
30 100 5000 0.00007 0.00295 0.04210*** 
10 100 10000 0.00049 -0.00352 0.03572*** 
20 100 10000 0.00169 -0.01561** 0.04246** 
30 100 10000 -0.00072 -0.00059 0.05194*** 

*  p-value < 0.1, ** p-value  < 0.05, *** p-value  < 0.01 
 

 
Table 9. Evaluation of Co-12 Properties  

 
Co-12 

Property Interpretation Evaluation Approach 

Correctness The explanation should correctly describe the behavior of the 
underlying black box model 

Section 5.1 
Completeness The explanation should comprehensively describe the behavior of the 

underlying black box model 
Compactness Offer sparse but meaningful explanation 
Consistency Identical inputs should have identical explanations 

Section 5.2 Continuity Similar inputs should have similar explanations 
Contrastivity Different inputs should have different explanations 
Confidence Explanation should contain accurate probability information Section 5.3 
Covariate 

complexity 
Explanations should offer appropriate feature complexity that are 

comprehensible Section 5.4 
Coherence Explanation should align with prior knowledge and beliefs 

Composition Explanations should be similar to real counterparts 

Section 6.1 Context User should be able to understand the explanation and act upon it 

Controllability User should be able to influence the explanation through interactions 

 
Table 10. Goodness of Fit of Logistic Regressions 

 Top 10 Features 
with highest 

node attention 

Top 10 interactions 
with highest edge 

attention 
AIC McFadden's 

R-square 

P-Value of 
Likelihood 
Ratio Test 

1 ✓  22156 0.218 
< 2.2e-16 

2 ✓ ✓ 22069 0.228 
 

Note: Dependent variable: ICU LoS <= 7 days. 
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Table 11. Evidence-based Support from Medical Literature 
 

Salient Interactions Relevant Clinical Findings 

Nutritional and Anti-inflammatory 
Agents (Day 2) -> Heart Rate 

Short term utilization of corticosteroids is associated with significant 
decrease in heart rate and can lead to bradycardia (Brotman et al. 2005) 

Patient Age -> Respiratory system 
related diagnosis 

Elder patients are known to have reduced lung capacity, which can 
contribute to respiratory failure (Sharma and Goodwin 2006).   

Nutritional and Anti-inflammatory 
Agents (Day 2) -> Patient Age 

Patient age is known to influence the potential adverse effects of 
corticosteroids (Yasir et al. 2023) 

Body Temperature -> Respiratory 
system related diagnosis 

Body temperature is known to influences breathing patterns and 
respiratory mechanics (Rubini and Bosco 2013).  

Body Temperature -> Patient Age Normal body temperature differs based on age (Geneva et al. 2019).  

Patient Age -> Injuries and poisoning Injury severity increased as age increased (Lee et al. 2019).  
Analgesics and Central Nervous 

System Agents (Day 2) -> 
Respiratory system related diagnosis 

Opioids utilization can lead to opioid-induced respiratory depression 
(Boom et al. 2012) 
 

Nutritional and Anti-inflammatory 
Agents (Day 2) -> Mental Disorders 

Corticosteroids utilization can lead to a variety of mental health 
problems, such as such as anxiety, depression, and psychosis (Alturaymi 
et al. 2023) 

Patient Age -> Heart Rate Heart rate variability, a reliable indicator of heart condition, becomes less 
random and more predictable with aging (Acharya et al. 2004). 

Patient Age -> Mental Disorders 
Older adults are more prone to cognitive and mood disorders, with late-
life depression linked to increased disability, poorer physical health, and 
higher mortality rate (McKinnon et al. 2016).  
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