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Preface

These notes go over some core concepts and terminologies in measure-theoretical
probability theory. The target readers are those who are interested in doing
research in artificial intelligence/machine learning/data mining, having back-
ground in basic probability, but haven’t seen measure-theoretical probability
theory yet. The goal is to help readers to understand modern machine learning
research papers written by statisticians and hopefully also make readers appre-
ciate the necessity and beauty of measure theory. These notes emphasize on
intuition so proofs are omitted, rigorous theorems are only included as needed,
and Remarks may be skipped at the first reading. The scope of these notes is far
below doing actually research in probability theory, and readers are encouraged
to check the sources these notes rely on for a rigorous treatment of this topic:
lecture notes by Sourav Chatterjee, lecture notes by John Hunter, and lecture
notes by Amir Dembo (the most rigorous and detailed).

The notes are under development so any feedback regarding errors, typos, or
general comments are welcome. (shichang@cs.ucla.edu).

1 Measure

The first key concept is the measure. Given a set Ω, a measure is a special set
function µ that maps a subset A ⊆ Ω to a number in [0,∞]. Intuitively, µ(A)
represents the “size” of A, which can be mass of a set, length, area, and volume
of a geometric shape, or more abstractly, probability of an event. We would
like measures to match our common intuition of these notions. However, not
all subsets A ∈ 2Ω can be rigorously assigned a notion of “size” that align with
intuition (an example is the Vitali set). We thus only talk about measures of
measurable sets, for which we can give a well-defined definition of “size”. This
is where a weird mathematical object called the σ-algebra comes into play. A
σ-algebra is simply a collection of subsets of Ω specifying which subsets are
measurable.
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Definition 1.1 (σ-algebra). Given a set Ω, F ∈ 2Ω is a σ-algebra if

(a) ∅ ∈ F
(b) A ∈ F =⇒ Ac ∈ F
(c) Ai ∈ F =⇒ ∪iAi ∈ F , where i ∈ N is countable

Remark 1.2. If we keep property (b), equivalent properties of (a) and (c) are

(a’) Ω ∈ F
(c’) Ai ∈ F =⇒ ∩iAi ∈ F , where i ∈ N is countable (by DeMorgan’s law)

Notice that though we haven’t formally defined what a measure is, by definition
of the σ-algebra, a subset A is measurable as long as it is in the σ-algebra. This
is pretty much like how a topology defines openness. Similarly as a topological
space, we now define a measurable space.

Definition 1.3 (Measurable Space, Measure, and Measure Space). Given a set
Ω and a σ-algebra F on Ω. The pair (Ω,F) is called a measurable space, and a
measure µ : F → [0,∞] is a set function satisfying the following properties.

(a) Non-negativity, i.e. µ(A) > 0 for all A ∈ F
(b) Null empty set, i.e. µ(∅) = 0
(c) Countable additivity, i.e. µ(∪iAi) =

∑
i µ(Ai) for disjoint Ai ∈ F , where

i ∈ N is countable

The triplet (Ω,F , µ) is called a measure space.

To construct a measure space, first equip any set with a σ-algebra to produce a
measurable space, and then equip the measurable space with any µ satisfying the
three properties above to produce a measure space. Notice that these properties
match our expected behavior of “size”. Generate the σ-algebra is a key step for
such construction. However, Definition 1.1 only tells us how to justify whether
a collection of subsets is a σ-algebra, but not how to generate one, nor even how
to concisely describe one.

Simple σ-algebras can be easily described by enumerating subsets in it. For
example, the simplest σ-algebra is {∅,Ω}. Another example for Ω0 = {1, 2, 3}
is F0 = {∅, {1}, {2, 3},Ω0}. More practical σ-algebras, on the other hand, are
hard to describe by enumeration, especially when there are uncountably many
sets. We thus develop the following definition to help us describe and generate
a σ-algebra, where we demand it to include the sets we care about while only
containing the minimum required sets for it to be a valid σ-algebra.

Definition 1.4 (Generated σ-algebra). Given an index set Γ (not necessarily
countable) and its corresponding collection of subsets {Aγ ⊆ Ω|γ ∈ Γ} (short
noted as {Aγ}), we denote the smallest σ-algebra containing {Aγ} by σ({Aγ}).
That is

σ({Aγ}) = ∩{F|F ∈ 2Ω is a σ-algebra and {Aγ} ∈ F}

We call σ({Aγ}) the σ-algebra generated by {Aγ} and {Aγ} the generator.
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Definition 1.4 gives us a convenient way to describe, generate, and compare σ-
algebras through their generators. The F0 mentioned above can be described
as σ({1}). For comparison, σ({Aγ}) = σ({Aβ}) if and only if {Aγ} ⊆ σ({Aβ})
and {Aβ} ⊆ σ({Aγ}).

A special type of generated σ-algebra that comes up all the time is the Borel
σ-algebra.

Definition 1.5 (Borel σ-algebra). Suppose Ω is a topological space, i.e. equipped
with a notion of open sets, the Borel σ-algebra BΩ is defined as BΩ = σ({O ⊆
Ω|O is open}). An element of BΩ is called a Borel set meaning that the set can
be constructed by applying the σ-algebra properties in Definition 1.1 on open
sets.

Remark 1.6. When Ω = R, BΩ is usually denoted as B. Other than the definition
using all open sets as the generator, there are many equivalent expressions for
B in terms of smaller interval generators, i.e.

B = σ({(a, b)|a < b ∈ R}) = σ({[a, b]|a < b ∈ R}) = σ({[a, b)|a < b ∈ R})
= σ({(−∞, b]|b ∈ R}) = σ({(−∞, b]|b ∈ Q})

So far we have discussed how to construct a measurable space (Ω,F) by gener-
ating the σ-algebra with a generator. The next step is to define the measure µ
to make it a measure space. Just like the problem we faced above, it is often
impossible to explicitly enumerate the value of µ on all A ∈ F . Instead, we want
to specify the values of a set function µ0 on a generator A and then extend µ0

on A to an actual measure µ on F . (Notice that we don’t say µ0 is a measure
because a measure is only defined on a measurable space, and A is not expected
to be a σ-algebra already, which means (Ω,A) is not a measurable space). Such
extension is nontrivial. Ideally, we would want A to be smaller than σ(A), and
we would also want the guaranteed existence and uniqueness of µ.

Given these requirements, we choose the algebra defined below as our generator.
It defer from σ-algebra by property (c) in Definition 1.1, where algebra is only
closed under unions rather than countable unions.

Definition 1.7 (Algebra). A ∈ 2Ω is an algebra if

(a) ∅ ∈ A
(b) A ∈ A =⇒ Ac ∈ A
(c) A,B ∈ A =⇒ A ∪B ∈ A

We pick algebras as generators because they are better behaved and much
smaller collections than σ-algebras (think about why smaller before checkout
this example). More importantly, the following theorem guarantees the exis-
tence and uniqueness of an extension from a set function on an algebra.

Theorem 1.8 (Carathéodory’s Extension Theorem). If µ0 is a countably addi-
tive set function on an algebra A. Then there exists a measure µ on (Ω, σ(A))
such that µ = µ0 on A. Furthermore, if µ0(Ω) < ∞, then µ is unique.
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Remark 1.9. In Theorem 1.8, the uniqueness of µ requires µ0 to be finite
(µ0(Ω) < ∞). This finite condition can actually be replaced by a weaker con-
dition called σ-finite, which is more commonly found in the statement of this
theorem. µ0 being σ-finite only requires Ω to be covered by a countable union
of sets where each of them has a finite measure. That is µ0 is σ-finite if

∃ a countable collection {Ai} s.t. Ω = ∪iAi and µ0(Ai) < ∞ for all i

σ-finite is considered as “the next best thing than finite” because you can ap-
proximate µ0(Ω) using a sequence of finite numbers although itself might be
infinite.

We now know how to specify values of a measure on a σ-algebra. We are almost
there for a concrete example of a measure.

Proposition 1.10. Given Ω, a measure µ can be constructed following either
of the two approaches

(a) Start from a generated σ-algebra F . Since we know (Ω,F) is a measurable
space, we can pick any set function µ that satisfies the three properties in
Definition 1.3 as a measure.

(b) Start from a set function µ with some ideal properties. We construct a
σ-algebra that is compatible with these ideal properties of µ, which at the
same time contains sets required by the three properties in Definition 1.3.

The approach (a) in Proposition 1.10 seems more straight forward upon our
discussion so far. It follows the order of F and then µ. Whatever set is in F ,
it is by definition measurable. In this case, µ doesn’t decide whether a set is
measurable or not so forcing some special “non-measurable” sets in F makes
define a meaningful µ impossible (the “non-measurable” here is not a standard
description. Roughly speaking, by “non-measurable”, I mean we cannot assign
a notion of “size” to it that matches our intuition of length, volume, and etc.
To be more strict, “non-measurable” means not Lebesgue measurable, which we
will define below). For example, the Vitali set V ⊆ [0, 1] is “non-measurable”.
However, we can define a σ-algebra F = {∅,V,Vc,Ω}, andV will be measurable
by definition. Given such F , µ cannot be something meaningful like the “length”
of V, but only some trivial function like the zero measure, i.e. µ : F → 0.

The approach (b) is a more desirable approach, we can follow it to define a set
function µ with properties we want. Then we collect “µ-measurable” (a non-
standard description, only in contrast to the “non-measurable” above, but will
be made concrete later) sets as a generator and generate a σ-algebra compatible
with µ. In this sense, the measure µ does decide whether a set is “µ-measurable”
or not. Next, we go through a concrete example of constructing the Lebesgue
measure following this approach.

Proposition 1.11. Let A be the set of all subsets of R that are finite disjoint
unions of half-open intervals of the form (a, b]∩R, where −∞ ≤ a ≤ b ≤ ∞ (we
include ∩R to ensure the interval is (a,∞) when b = ∞). Let λ : A → R be a
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set function satisfying

λ(∪n
i=1(ai, bi] ∩ R) =

n∑
i

(bi − ai)

Notice that the property of λ is exactly what we want for length of intervals,
which is also the property of the Lebesgue measure as a natural notion of “size”.
The construction of the Lebesgue measure follows these steps below.

1. The A defined in Proposition 1.11 is an algebra

2. The σ-algebra A generates is the Borel σ-algebra, i.e. σ(A) = B

3. The λ defined in Proposition 1.11 is countably additive and σ-finite.

4. By Theorem 1.8, there is a measure as the unique extension of λ on B,
which we call the Lebesgue measure.

Following the steps above we get the Lebesgue measure properly defined on
(R,B), with B stands for the Borel σ-algebra. In other words, all sets in B are
compatible with the Lebesgue measure. However, B doesn’t give us all the “λ-
measurable” (Lebesgue-measurable) sets, which form a strictly larger σ-algebra
than B. For practical purpose, B is often good enough, but as promised we
will properly define Lebesgue-measurable and construct the Lebesgue measure
on all such sets, since Lebesgue-measurable is quite a frequently used term that
is easily confused with Borel (defined in Definition 1.5) or Borel-measurable
(haven’t defined yet).

Next we introduce how we can generate a σ-algebra containing all “µ-measurable”
sets for a given µ, and then we go through the special case for µ being the
Lebesgue measure.

We first define a new function called the outer measure to help us construct the
proper σ-algebra, which relaxes the countable additivity property of a measure
stated in Definition 1.3.

Definition 1.12 (Outer Measure). Given a set Ω, a set function µ∗ : 2Ω →
[0,∞] is an outer measure if it satisfies the following properties.

(a) Non-negativity, i.e. µ∗(A) > 0 for all A ∈ 2Ω

(b) Null empty set, i.e. µ∗(∅) = 0
(c) Monotone, i.e. A ⊆ B =⇒ µ∗(A) ≤ µ∗(B)
(d) Countable sub-additivity, i.e. µ∗(∪iAi) ≤

∑
i µ

∗(Ai) for disjoint Ai ∈ Ω,
where i ∈ N is countable

Note that an outer measure is not necessarily a measure because of the re-
laxation, but a measure is an outer measure because monotone and countable
sub-additivity follow from countable additivity. Unlike measures, the definition
of an outer measure doesn’t rely on a σ-algebra. Rather, we use µ∗ to pick out
the µ∗-measurable sets defined below, which form a σ-algebra.
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Definition 1.13. Given µ∗ as an outer measure on a set Ω, a subset A ⊆ Ω is
called µ∗-measurable if for all S ⊆ Ω,

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ SC)

The Definition 1.13, is sometimes referred as the Carathéodory criterion or the
“clean division” criterion. It basically says that a µ∗-measurable set should
be cleanly divided to two pieces by any subset S ⊆ Ω and its complement.
Nothing from this division should be extra or left out when measured by µ∗.
Although this definition is not very intuitive, it is a very clean way of defining
measurable sets (Curious readers can read more about how Lebesgue defined
measurable sets in the first place using Lebesgue inner measure and Lebesgue
outer measure, see these notes. Lebesgue’s approach was more intuitive but
much more complicated. After that Carathéodory provided this equivalent and
cleaner criterion).

The important theorem about the outer measure that serves our purpose is
the following, which gives us the σ-algebra we need, and the measure that
follows.

Theorem 1.14. Given a set Ω and an outer measure µ∗ on Ω. Let F be the
collection of all µ∗-measurable sets in 2Ω. Then F is a σ-algebra and µ∗ is a
measure on F .

Theorem 1.14 can be used to construct all kinds of measures from the cor-
responding outer measures. Following it, we are no longer constructing the
σ-algebra from a generator, but pick out all measurable sets from the power set
2Ω. A special case is the Lebesgue measure from the Lebesgue outer measure
defined below.

Definition 1.15 (Lebesgue Outer Measure). The Lebesgue outer measure of
a subset S ⊆ R, denoted by λ∗(S), is defined as the infimum taken over all
countable collections of intervals Ii whose union covers S. That is, with Ii =
(ai, bi) denotes the interval and l(Ii) = (bi − ai) denotes the length,

λ∗(S) = inf{
∞∑
i=1

l(Ii)|S ∈ ∪∞
i=1l(Ii)}

Remark 1.16. The interval Ii being open is an arbitrary choice. They can be
picked to be closed, half-open, etc.

The more general construction of the Lebesgue measure on all Lebesgue mea-
surable sets follows these steps below.

1. The λ∗ defined in Definition 1.15 is an outer measure

2. By Theorem 1.14, λ∗ generates an σ-algebra F with all λ∗-measurable
(Lebesgue measurable) sets
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3. Restriction of λ∗ on F gives the Lebesgue measure λ

This construction gives the same Lebesgue measure as the other construction
we discussed above but on a strictly larger σ-algebra F containing B. (For
practical purpose, B is often good enough, but if you are really curious, here
is an example of a Lebesgue-measurable but not Borel set). In fact, F is a
completion of B which contains all Borel sets and measure-zero sets as we define
below.

Definition 1.17 (Complete Measure Space). We call a measure space (Ω,F , µ)
complete if any subset S of any A ∈ F with µ(S) = 0 is also in F . The F is also
referred as a complete σ-algebra for the measure µ when mentioned solely. For
every measure space, there exists a complete measure space (Ω, F̄ , µ̄), called the
completion of (Ω,F , µ), such that F ⊆ F̄ and µ̄ = µ on F .

Remark 1.18. We can define the collection of µ-null sets as N = {N |N ⊆
A for A ∈ F and µ(A) = 0}. Then the completion in Definition 1.17 is given by
F̄ = {A ∪N |A ∈ F , N ∈ N} = σ(F ,N ) and µ̄(A ∪N) = µ(A). This means we
can throw the µ-null sets into a σ-algebra to complete it. The completion of the
Borel σ-algebra with λ-null sets is called the Lebesgue σ-algebra, which contains
all Lebesgue measurable sets and is strictly larger than the Borel σ-algebra.

The Lebesgue measure is perhaps the most important measure. It can be ex-
tended to Rn following similar steps like above, and it has the following prop-
erties align with our intuition of length, area, and volume in Rn

Proposition 1.19. The Lebesgue measure λ on Rn satisfies

(a) Non-negativity, i.e. λ(A) ≥ 0 for any set A.
(b) Matching length of intervals, i.e. λ([a, b]) = b− a
(c) Translation invariance, i.e. λ(A) = λ(A + x) for any x ∈ Rn, where

A+ x = {a+ x|a ∈ A}.
(d) Countable additivity, i.e. λ(∪iAi) =

∑
i λ(Ai) for disjoint Ai ⊆ Rn,

where i ∈ N is countable

These four properties holds on all Lebesgue measurable sets and have been
proven to be impossible to hold simultaneously for all sets of Rn.

Remark 1.20. Being a notion of “size”, the Lebesgue measure is different from
cardinality or density. Although finite and countable sets all have Lebesgue
measure zero, there are sets with uncountably many points but have measure
zero, e.g. the Cantor set or other examples. There are even more interesting
sets that are nowhere dense (contain no intervals) but with positive measures,
e.g. the fat Cantor set.

2 Measurable Functions and Integration

To be continue
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